基于深度学习特征的分类归一化技术评价

A. D. Freitas, Adriano B. Silva, A. S. Martins, L. A. Neves, T. A. A. Tosta, P. D. Faria, M. Z. Nascimento
{"title":"基于深度学习特征的分类归一化技术评价","authors":"A. D. Freitas, Adriano B. Silva, A. S. Martins, L. A. Neves, T. A. A. Tosta, P. D. Faria, M. Z. Nascimento","doi":"10.5753/wvc.2021.18898","DOIUrl":null,"url":null,"abstract":"Cancer is one of the diseases with the highest mortality rate in the world. Dysplasia is a difficult-to-diagnose precancerous lesion, which may not have a good Hematoxylin and Eosin (H&E) stain ratio, making it difficult for the histology specialist to diagnose. In this work, a method for normalizing H&E stains in histological images was investigated. This method uses a generative neural network based on a U-net for image generation and a PatchGAN architecture for information discrimination. Then, the normalized histological images were employed in classification algorithms to investigate the detection of the level of dysplasia present in the histological tissue of the oral cavity. The CNN models as well as hybrid models based on learning features and machine learning algorithms were evaluated. The employment of the ResNet-50 architecture and the Random Forest algorithm provided results with an accuracy rate around 97% for the images normalized with the investigated method.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of normalization technique on classification with deep learning features\",\"authors\":\"A. D. Freitas, Adriano B. Silva, A. S. Martins, L. A. Neves, T. A. A. Tosta, P. D. Faria, M. Z. Nascimento\",\"doi\":\"10.5753/wvc.2021.18898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer is one of the diseases with the highest mortality rate in the world. Dysplasia is a difficult-to-diagnose precancerous lesion, which may not have a good Hematoxylin and Eosin (H&E) stain ratio, making it difficult for the histology specialist to diagnose. In this work, a method for normalizing H&E stains in histological images was investigated. This method uses a generative neural network based on a U-net for image generation and a PatchGAN architecture for information discrimination. Then, the normalized histological images were employed in classification algorithms to investigate the detection of the level of dysplasia present in the histological tissue of the oral cavity. The CNN models as well as hybrid models based on learning features and machine learning algorithms were evaluated. The employment of the ResNet-50 architecture and the Random Forest algorithm provided results with an accuracy rate around 97% for the images normalized with the investigated method.\",\"PeriodicalId\":311431,\"journal\":{\"name\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wvc.2021.18898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症是世界上死亡率最高的疾病之一。不典型增生是一种难以诊断的癌前病变,它可能没有很好的苏木精和伊红(H&E)染色比,使组织学专家难以诊断。在这项工作中,研究了一种在组织学图像中归一化H&E染色的方法。该方法使用基于U-net的生成神经网络进行图像生成,使用PatchGAN架构进行信息识别。然后,将归一化的组织学图像用于分类算法,研究口腔组织中存在的不典型增生水平的检测。对CNN模型以及基于学习特征和机器学习算法的混合模型进行了评价。采用ResNet-50架构和随机森林算法,对所研究方法归一化的图像,准确率约为97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of normalization technique on classification with deep learning features
Cancer is one of the diseases with the highest mortality rate in the world. Dysplasia is a difficult-to-diagnose precancerous lesion, which may not have a good Hematoxylin and Eosin (H&E) stain ratio, making it difficult for the histology specialist to diagnose. In this work, a method for normalizing H&E stains in histological images was investigated. This method uses a generative neural network based on a U-net for image generation and a PatchGAN architecture for information discrimination. Then, the normalized histological images were employed in classification algorithms to investigate the detection of the level of dysplasia present in the histological tissue of the oral cavity. The CNN models as well as hybrid models based on learning features and machine learning algorithms were evaluated. The employment of the ResNet-50 architecture and the Random Forest algorithm provided results with an accuracy rate around 97% for the images normalized with the investigated method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coffee plant image segmentation and disease detection using JSEG algorithm Grocery Product Recognition to Aid Visually Impaired People Pavement Crack Segmentation using a U-Net based Neural Network Periocular authentication in smartphones applying uLBP descriptor on CNN Feature Maps Automatic Segmentation and ROI detection in cardiac MRI of Cardiomyopathy using q-Sigmoid as preprocessing step
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1