利用前馈神经网络减少有限元后处理的计算时间

M. Zlatić, M. Čanađija
{"title":"利用前馈神经网络减少有限元后处理的计算时间","authors":"M. Zlatić, M. Čanađija","doi":"10.4995/yic2021.2021.12473","DOIUrl":null,"url":null,"abstract":"With the recent surge in neural network usage, machine learning libraries have become more convenient to use and implement. In this paper we investigate the possibility of using neural networks in order to faster process displacements obtained from finite element calculation and replace existing post-processing procedures. The method is implemented on 2D finite elements for their relative ease of usage and manipulation. A speed up is observed in comparison to traditional methods of post-processing. Possible further applications of this method are also presented in this paper.","PeriodicalId":406819,"journal":{"name":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing computational time for FEM postprocessing through the use of feedforward neural networks\",\"authors\":\"M. Zlatić, M. Čanađija\",\"doi\":\"10.4995/yic2021.2021.12473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the recent surge in neural network usage, machine learning libraries have become more convenient to use and implement. In this paper we investigate the possibility of using neural networks in order to faster process displacements obtained from finite element calculation and replace existing post-processing procedures. The method is implemented on 2D finite elements for their relative ease of usage and manipulation. A speed up is observed in comparison to traditional methods of post-processing. Possible further applications of this method are also presented in this paper.\",\"PeriodicalId\":406819,\"journal\":{\"name\":\"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/yic2021.2021.12473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/yic2021.2021.12473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着最近神经网络使用量的激增,机器学习库的使用和实现变得更加方便。在本文中,我们研究了使用神经网络的可能性,以便更快地处理由有限元计算得到的位移,并取代现有的后处理程序。该方法是在二维有限元上实现的,因为它们相对容易使用和操作。与传统的后处理方法相比,观察到速度加快。本文还对该方法的进一步应用进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing computational time for FEM postprocessing through the use of feedforward neural networks
With the recent surge in neural network usage, machine learning libraries have become more convenient to use and implement. In this paper we investigate the possibility of using neural networks in order to faster process displacements obtained from finite element calculation and replace existing post-processing procedures. The method is implemented on 2D finite elements for their relative ease of usage and manipulation. A speed up is observed in comparison to traditional methods of post-processing. Possible further applications of this method are also presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite Element Simulation and Comparison of Piezoelectric Vibration-Based Energy Harvesters with Advanced Electric Circuits An adaptive discrete Newton method for regularization-free Bingham model Block strategies to compute the lambda modes associated with the neutron diffusion equation A Space-Time FE Level-set method for convection coupled phase-change processes Monolithic Newton-Multigrid Solver for Multiphase Flow Problems with Surface Tension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1