粒子群优化算法在轮廓优化中的应用

G. Klepac
{"title":"粒子群优化算法在轮廓优化中的应用","authors":"G. Klepac","doi":"10.4018/IJNCR.2015100101","DOIUrl":null,"url":null,"abstract":"Complex analytical environment is challenging environment for finding customer profiles. In situation where predictive model exists like Bayesian networks challenge became even bigger regarding combinatory explosion. Complex analytical environment can be caused by multiple modality of output variable, fact that each node of Bayesian network can potetnitaly be target variable for profiling, as well as from big data environment, which cause data complexity in way of data quantity. As an illustration of presented concept particle swarm optimization algorithm will be used as a tool, which will find profiles from developed predictive model of Bayesian network. This paper will show how partical swarm optimization algorithm can be powerfull tool for finding optimal customer profiles given target conditions as evidences within Bayesian networks.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Particle Swarm Optimization Algorithm as a Tool for Profile Optimization\",\"authors\":\"G. Klepac\",\"doi\":\"10.4018/IJNCR.2015100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex analytical environment is challenging environment for finding customer profiles. In situation where predictive model exists like Bayesian networks challenge became even bigger regarding combinatory explosion. Complex analytical environment can be caused by multiple modality of output variable, fact that each node of Bayesian network can potetnitaly be target variable for profiling, as well as from big data environment, which cause data complexity in way of data quantity. As an illustration of presented concept particle swarm optimization algorithm will be used as a tool, which will find profiles from developed predictive model of Bayesian network. This paper will show how partical swarm optimization algorithm can be powerfull tool for finding optimal customer profiles given target conditions as evidences within Bayesian networks.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJNCR.2015100101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJNCR.2015100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

复杂的分析环境是寻找客户档案的挑战环境。在像贝叶斯网络这样的预测模型存在的情况下,对于组合爆炸的挑战变得更大。复杂的分析环境是由于输出变量的多重模态,贝叶斯网络的每个节点都可能成为分析的目标变量,以及来自大数据环境,这些都会导致数据在数据量方面的复杂性。为了说明所提出的概念,粒子群优化算法将被用作一种工具,它将从贝叶斯网络的预测模型中找到剖面。本文将展示粒子群优化算法如何成为贝叶斯网络中给定目标条件作为证据的最优客户档案的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle Swarm Optimization Algorithm as a Tool for Profile Optimization
Complex analytical environment is challenging environment for finding customer profiles. In situation where predictive model exists like Bayesian networks challenge became even bigger regarding combinatory explosion. Complex analytical environment can be caused by multiple modality of output variable, fact that each node of Bayesian network can potetnitaly be target variable for profiling, as well as from big data environment, which cause data complexity in way of data quantity. As an illustration of presented concept particle swarm optimization algorithm will be used as a tool, which will find profiles from developed predictive model of Bayesian network. This paper will show how partical swarm optimization algorithm can be powerfull tool for finding optimal customer profiles given target conditions as evidences within Bayesian networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1