利用主动自省在网络云上适应科学工作流

A. Mandal, P. Ruth, I. Baldin, Yufeng Xin, C. Castillo, G. Juve, M. Rynge, E. Deelman, J. Chase
{"title":"利用主动自省在网络云上适应科学工作流","authors":"A. Mandal, P. Ruth, I. Baldin, Yufeng Xin, C. Castillo, G. Juve, M. Rynge, E. Deelman, J. Chase","doi":"10.1109/UCC.2015.32","DOIUrl":null,"url":null,"abstract":"Recent advances in cloud technologies and on-demand network circuits have created an unprecedented opportunity to enable complex data-intensive scientific applications to run on dynamic, networked cloud infrastructure. However, there is a lack of tools for supporting high-level applications like scientific workflows on dynamically provisioned, virtualized, networked IaaS (NIaaS) systems. In this paper, we propose an end-to-end system consisting of application-aware and application-independent controllers that provision and adapt complex scientific workflows on NIaaS systems. The application-independent controller enhances the utility of NIaaS systems for higher-level applications by closing the gap between application abstractions and resource provisioning constructs. We also present our approach to predicting dynamic resource requirements for workflows using an application-aware controller that proactively evaluates alternative candidate resource allotments using workflow introspection. We show how these high-level resource requirements can be automatically transformed to low-level NIaaS operations to actuate infrastructure adaptation. The results of our evaluations show that we can make fairly accurate predictions, and the interplay of prediction and adaptation can balance performance and utilization for a representative data-intensive workflow.","PeriodicalId":381279,"journal":{"name":"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)","volume":"4020 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adapting Scientific Workflows on Networked Clouds Using Proactive Introspection\",\"authors\":\"A. Mandal, P. Ruth, I. Baldin, Yufeng Xin, C. Castillo, G. Juve, M. Rynge, E. Deelman, J. Chase\",\"doi\":\"10.1109/UCC.2015.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in cloud technologies and on-demand network circuits have created an unprecedented opportunity to enable complex data-intensive scientific applications to run on dynamic, networked cloud infrastructure. However, there is a lack of tools for supporting high-level applications like scientific workflows on dynamically provisioned, virtualized, networked IaaS (NIaaS) systems. In this paper, we propose an end-to-end system consisting of application-aware and application-independent controllers that provision and adapt complex scientific workflows on NIaaS systems. The application-independent controller enhances the utility of NIaaS systems for higher-level applications by closing the gap between application abstractions and resource provisioning constructs. We also present our approach to predicting dynamic resource requirements for workflows using an application-aware controller that proactively evaluates alternative candidate resource allotments using workflow introspection. We show how these high-level resource requirements can be automatically transformed to low-level NIaaS operations to actuate infrastructure adaptation. The results of our evaluations show that we can make fairly accurate predictions, and the interplay of prediction and adaptation can balance performance and utilization for a representative data-intensive workflow.\",\"PeriodicalId\":381279,\"journal\":{\"name\":\"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)\",\"volume\":\"4020 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCC.2015.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC.2015.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

云技术和按需网络电路的最新进展创造了一个前所未有的机会,使复杂的数据密集型科学应用程序能够在动态、网络化的云基础设施上运行。然而,缺乏支持高级应用程序的工具,例如在动态供应的、虚拟化的、联网的IaaS (NIaaS)系统上的科学工作流。在本文中,我们提出了一个端到端系统,该系统由应用感知和应用独立的控制器组成,可在NIaaS系统上提供和适应复杂的科学工作流。独立于应用程序的控制器通过缩小应用程序抽象和资源配置构造之间的差距,增强了NIaaS系统对高级应用程序的效用。我们还提出了预测工作流动态资源需求的方法,该方法使用应用程序感知控制器,该控制器使用工作流自省主动评估备选资源分配。我们将展示如何将这些高级资源需求自动转换为低级NIaaS操作,以启动基础设施适应。我们的评估结果表明,我们可以做出相当准确的预测,并且预测和适应的相互作用可以平衡具有代表性的数据密集型工作流的性能和利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adapting Scientific Workflows on Networked Clouds Using Proactive Introspection
Recent advances in cloud technologies and on-demand network circuits have created an unprecedented opportunity to enable complex data-intensive scientific applications to run on dynamic, networked cloud infrastructure. However, there is a lack of tools for supporting high-level applications like scientific workflows on dynamically provisioned, virtualized, networked IaaS (NIaaS) systems. In this paper, we propose an end-to-end system consisting of application-aware and application-independent controllers that provision and adapt complex scientific workflows on NIaaS systems. The application-independent controller enhances the utility of NIaaS systems for higher-level applications by closing the gap between application abstractions and resource provisioning constructs. We also present our approach to predicting dynamic resource requirements for workflows using an application-aware controller that proactively evaluates alternative candidate resource allotments using workflow introspection. We show how these high-level resource requirements can be automatically transformed to low-level NIaaS operations to actuate infrastructure adaptation. The results of our evaluations show that we can make fairly accurate predictions, and the interplay of prediction and adaptation can balance performance and utilization for a representative data-intensive workflow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CYCLONE Unified Deployment and Management of Federated, Multi-cloud Applications Cloud Orchestration Features: Are Tools Fit for Purpose? Efficient Update of Encrypted Files for Cloud Storage Adaptive Performance Isolation Middleware for Multi-tenant SaaS Agent-Based Modelling as a Service on Amazon EC2: Opportunities and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1