一种并行图像检索和ROI分割的生成模型

I. González-Díaz, Carlos E. Baz-Hormigos, Moises Berdonces, F. Díaz-de-María
{"title":"一种并行图像检索和ROI分割的生成模型","authors":"I. González-Díaz, Carlos E. Baz-Hormigos, Moises Berdonces, F. Díaz-de-María","doi":"10.1109/CBMI.2012.6269844","DOIUrl":null,"url":null,"abstract":"This paper proposes a probabilistic generative model that concurrently tackles the problems of image retrieval and detection of the region-of-interest (ROI). By introducing a latent variable that classifies the matches as true or false, we specifically focus on the application of geometric constrains to the keypoint matching process and the achievement of robust estimates of the geometric transformation between two images showing the same object. Our experiments in a challenging image retrieval database demonstrate that our approach outperforms the most prevalent approach for geometrically constrained matching, and compares favorably to other state-of-the-art methods. Furthermore, the proposed technique concurrently provides very good segmentations of the region of interest.","PeriodicalId":120769,"journal":{"name":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A generative model for concurrent image retrieval and ROI segmentation\",\"authors\":\"I. González-Díaz, Carlos E. Baz-Hormigos, Moises Berdonces, F. Díaz-de-María\",\"doi\":\"10.1109/CBMI.2012.6269844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a probabilistic generative model that concurrently tackles the problems of image retrieval and detection of the region-of-interest (ROI). By introducing a latent variable that classifies the matches as true or false, we specifically focus on the application of geometric constrains to the keypoint matching process and the achievement of robust estimates of the geometric transformation between two images showing the same object. Our experiments in a challenging image retrieval database demonstrate that our approach outperforms the most prevalent approach for geometrically constrained matching, and compares favorably to other state-of-the-art methods. Furthermore, the proposed technique concurrently provides very good segmentations of the region of interest.\",\"PeriodicalId\":120769,\"journal\":{\"name\":\"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2012.6269844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2012.6269844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种概率生成模型,同时解决了图像检索和感兴趣区域(ROI)检测问题。通过引入一个将匹配分类为真或假的潜在变量,我们特别关注几何约束在关键点匹配过程中的应用,并实现对显示同一物体的两幅图像之间几何变换的鲁棒估计。我们在一个具有挑战性的图像检索数据库中的实验表明,我们的方法优于最流行的几何约束匹配方法,并且与其他最先进的方法相比更具优势。此外,所提出的技术同时提供了非常好的感兴趣区域分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A generative model for concurrent image retrieval and ROI segmentation
This paper proposes a probabilistic generative model that concurrently tackles the problems of image retrieval and detection of the region-of-interest (ROI). By introducing a latent variable that classifies the matches as true or false, we specifically focus on the application of geometric constrains to the keypoint matching process and the achievement of robust estimates of the geometric transformation between two images showing the same object. Our experiments in a challenging image retrieval database demonstrate that our approach outperforms the most prevalent approach for geometrically constrained matching, and compares favorably to other state-of-the-art methods. Furthermore, the proposed technique concurrently provides very good segmentations of the region of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Water flow detection from a wearable device with a new feature, the spectral cover Comparing segmentation strategies for efficient video passage retrieval Audio and video cues for geo-tagging online videos in the absence of metadata Data pre-processing to improve SVM video classification Analyzing the behavior of professional video searchers using RAI query logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1