相机到相机的几何估计不需要重叠在他们的视野

Ding Yuan, R. Chung
{"title":"相机到相机的几何估计不需要重叠在他们的视野","authors":"Ding Yuan, R. Chung","doi":"10.1109/ICIP.2007.4378933","DOIUrl":null,"url":null,"abstract":"Calibrating the relative geometry between cameras which would move against one another from time to time is an important problem in multi-camera system. Most of the existing calibration technologies are based on the cross-camera feature correspondences. This paper presents a new solution method. The method demands image data captured under a rigid motion of the camera pair, but unlike the existing motion correspondence-based calibration methods, it does not estimate optical flows nor motion correspondences explicitly. Instead it estimates the inter-camera geometry from the observations that are directly available from the two image streams -the monocular normal flows. Experimental results on real image data are shown to illustrate the feasibility of the solution.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Camera-to-Camera Geometry Estimation Requiring no Overlap in their Visual Fields\",\"authors\":\"Ding Yuan, R. Chung\",\"doi\":\"10.1109/ICIP.2007.4378933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calibrating the relative geometry between cameras which would move against one another from time to time is an important problem in multi-camera system. Most of the existing calibration technologies are based on the cross-camera feature correspondences. This paper presents a new solution method. The method demands image data captured under a rigid motion of the camera pair, but unlike the existing motion correspondence-based calibration methods, it does not estimate optical flows nor motion correspondences explicitly. Instead it estimates the inter-camera geometry from the observations that are directly available from the two image streams -the monocular normal flows. Experimental results on real image data are shown to illustrate the feasibility of the solution.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4378933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4378933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多摄像机系统中,摄像机之间的相对几何形状的标定是一个重要的问题。现有的标定技术大多是基于相机间的特征对应。本文提出了一种新的求解方法。该方法要求在相机对的刚性运动下捕获图像数据,但与现有的基于运动对应的校准方法不同,它不明确地估计光流或运动对应。相反,它通过直接从两个图像流(单目正常流)中获得的观测结果来估计相机间的几何形状。在实际图像数据上的实验结果验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Camera-to-Camera Geometry Estimation Requiring no Overlap in their Visual Fields
Calibrating the relative geometry between cameras which would move against one another from time to time is an important problem in multi-camera system. Most of the existing calibration technologies are based on the cross-camera feature correspondences. This paper presents a new solution method. The method demands image data captured under a rigid motion of the camera pair, but unlike the existing motion correspondence-based calibration methods, it does not estimate optical flows nor motion correspondences explicitly. Instead it estimates the inter-camera geometry from the observations that are directly available from the two image streams -the monocular normal flows. Experimental results on real image data are shown to illustrate the feasibility of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1