用于技术应用的神经模糊遗传分类器

M. Gorzałczany, P. Grądzki
{"title":"用于技术应用的神经模糊遗传分类器","authors":"M. Gorzałczany, P. Grądzki","doi":"10.1109/ICIT.2000.854204","DOIUrl":null,"url":null,"abstract":"The paper presents an approach that combines artificial neural networks with fuzzy logic to form a neuro-fuzzy classifier. The proposed system has a feedforward network-like structure that mirrors fuzzy rules. The proposed system is able to learn and to generalize gained knowledge (it comes from the network-like structure) as well as to explain the decisions it makes. Its learning abilities are strengthened by applying a genetic algorithm as a technique of global optimization. The proposed neuro-fuzzy classifier has been successfully applied to the glass identification problem in forensic science.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A neuro-fuzzy-genetic classifier for technical applications\",\"authors\":\"M. Gorzałczany, P. Grądzki\",\"doi\":\"10.1109/ICIT.2000.854204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an approach that combines artificial neural networks with fuzzy logic to form a neuro-fuzzy classifier. The proposed system has a feedforward network-like structure that mirrors fuzzy rules. The proposed system is able to learn and to generalize gained knowledge (it comes from the network-like structure) as well as to explain the decisions it makes. Its learning abilities are strengthened by applying a genetic algorithm as a technique of global optimization. The proposed neuro-fuzzy classifier has been successfully applied to the glass identification problem in forensic science.\",\"PeriodicalId\":405648,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2000.854204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文提出了一种将人工神经网络与模糊逻辑相结合形成神经模糊分类器的方法。该系统具有反映模糊规则的前馈网络结构。所提出的系统能够学习和概括获得的知识(它来自类似网络的结构),并解释它做出的决定。采用遗传算法作为全局优化技术,增强了其学习能力。所提出的神经模糊分类器已成功应用于法医学中的玻璃识别问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neuro-fuzzy-genetic classifier for technical applications
The paper presents an approach that combines artificial neural networks with fuzzy logic to form a neuro-fuzzy classifier. The proposed system has a feedforward network-like structure that mirrors fuzzy rules. The proposed system is able to learn and to generalize gained knowledge (it comes from the network-like structure) as well as to explain the decisions it makes. Its learning abilities are strengthened by applying a genetic algorithm as a technique of global optimization. The proposed neuro-fuzzy classifier has been successfully applied to the glass identification problem in forensic science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nonlinear nonautonomous state space systems from input-output measurements On stabilizing gains far digital control systems Developing an experimental mobile robot-ROVEL Failure detection/management in launch vehicle avionics Static UPS failures-origin and possible prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1