{"title":"用于技术应用的神经模糊遗传分类器","authors":"M. Gorzałczany, P. Grądzki","doi":"10.1109/ICIT.2000.854204","DOIUrl":null,"url":null,"abstract":"The paper presents an approach that combines artificial neural networks with fuzzy logic to form a neuro-fuzzy classifier. The proposed system has a feedforward network-like structure that mirrors fuzzy rules. The proposed system is able to learn and to generalize gained knowledge (it comes from the network-like structure) as well as to explain the decisions it makes. Its learning abilities are strengthened by applying a genetic algorithm as a technique of global optimization. The proposed neuro-fuzzy classifier has been successfully applied to the glass identification problem in forensic science.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A neuro-fuzzy-genetic classifier for technical applications\",\"authors\":\"M. Gorzałczany, P. Grądzki\",\"doi\":\"10.1109/ICIT.2000.854204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an approach that combines artificial neural networks with fuzzy logic to form a neuro-fuzzy classifier. The proposed system has a feedforward network-like structure that mirrors fuzzy rules. The proposed system is able to learn and to generalize gained knowledge (it comes from the network-like structure) as well as to explain the decisions it makes. Its learning abilities are strengthened by applying a genetic algorithm as a technique of global optimization. The proposed neuro-fuzzy classifier has been successfully applied to the glass identification problem in forensic science.\",\"PeriodicalId\":405648,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2000.854204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A neuro-fuzzy-genetic classifier for technical applications
The paper presents an approach that combines artificial neural networks with fuzzy logic to form a neuro-fuzzy classifier. The proposed system has a feedforward network-like structure that mirrors fuzzy rules. The proposed system is able to learn and to generalize gained knowledge (it comes from the network-like structure) as well as to explain the decisions it makes. Its learning abilities are strengthened by applying a genetic algorithm as a technique of global optimization. The proposed neuro-fuzzy classifier has been successfully applied to the glass identification problem in forensic science.