散斑干涉法:改进驯服障碍的方法

P. Jacquot
{"title":"散斑干涉法:改进驯服障碍的方法","authors":"P. Jacquot","doi":"10.1117/12.677171","DOIUrl":null,"url":null,"abstract":"In a two-beam interference experiment involving at least one speckle wave, intensity and phase are rapidly fluctuating distributions. There is no way to make a prediction of the evolution of the interference pattern aver distances greater than the correlation volume - as small as 3×3×100 μm3 for visible wavelengths and usual apertures. Most of the difficulties associated with a correct understanding and a good practice of speckle interferometry (SI) arise from this observation. It also explains why a technique simply ruled by the elementary two-beam interference or triangle formula raises nonetheless many problems. This contribution reviews some of the fundamentals of SI, mainly those concerned with the consequences of the random nature of the speckle phenomenon. It discusses what is thought to be the most interesting optical arrangements, modi operandi and phase extraction schemes, and finally presents selected applications. Constantly kept in mind is the idea to try to cope with the apparent disorder of the analyzed speckle distributions.","PeriodicalId":266048,"journal":{"name":"International Conference on Holography, Optical Recording, and Processing of Information","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Speckle interferometry: refining the methods for taming disorder\",\"authors\":\"P. Jacquot\",\"doi\":\"10.1117/12.677171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a two-beam interference experiment involving at least one speckle wave, intensity and phase are rapidly fluctuating distributions. There is no way to make a prediction of the evolution of the interference pattern aver distances greater than the correlation volume - as small as 3×3×100 μm3 for visible wavelengths and usual apertures. Most of the difficulties associated with a correct understanding and a good practice of speckle interferometry (SI) arise from this observation. It also explains why a technique simply ruled by the elementary two-beam interference or triangle formula raises nonetheless many problems. This contribution reviews some of the fundamentals of SI, mainly those concerned with the consequences of the random nature of the speckle phenomenon. It discusses what is thought to be the most interesting optical arrangements, modi operandi and phase extraction schemes, and finally presents selected applications. Constantly kept in mind is the idea to try to cope with the apparent disorder of the analyzed speckle distributions.\",\"PeriodicalId\":266048,\"journal\":{\"name\":\"International Conference on Holography, Optical Recording, and Processing of Information\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Holography, Optical Recording, and Processing of Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.677171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Holography, Optical Recording, and Processing of Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.677171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在涉及至少一个散斑波的双光束干涉实验中,散斑波的强度和相位呈快速波动分布。没有办法预测干涉图样在大于相关体积的距离上的演变——对于可见光波长和通常的孔径,小到3×3×100 μm3。与正确理解和良好实践散斑干涉(SI)相关的大多数困难都来自于这一观察结果。这也解释了为什么仅仅由基本双光束干涉或三角形公式支配的技术仍然会引起许多问题。这篇文章回顾了SI的一些基本原理,主要是那些与散斑现象的随机性质有关的结果。它讨论了被认为是最有趣的光学排列,操作方式和相位提取方案,最后提出了选择的应用。经常记在心里的是设法处理所分析的散斑分布的明显无序的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speckle interferometry: refining the methods for taming disorder
In a two-beam interference experiment involving at least one speckle wave, intensity and phase are rapidly fluctuating distributions. There is no way to make a prediction of the evolution of the interference pattern aver distances greater than the correlation volume - as small as 3×3×100 μm3 for visible wavelengths and usual apertures. Most of the difficulties associated with a correct understanding and a good practice of speckle interferometry (SI) arise from this observation. It also explains why a technique simply ruled by the elementary two-beam interference or triangle formula raises nonetheless many problems. This contribution reviews some of the fundamentals of SI, mainly those concerned with the consequences of the random nature of the speckle phenomenon. It discusses what is thought to be the most interesting optical arrangements, modi operandi and phase extraction schemes, and finally presents selected applications. Constantly kept in mind is the idea to try to cope with the apparent disorder of the analyzed speckle distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D behaviour of photopolymers as holographic recording material Spectral analysis of shrinkage in holographic materials suitable for optical storage applications Analysis of amplitude and phase coupling in volume holography Replay at optical communications wavelengths of holographic gratings recorded in the visible The holographic recording in photopolymer by excitation forbidden singlet-triplet transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1