基于物理约束迭代反卷积算法的空间目标识别

J. Christou, E. Hege, S. Jefferies, M. Cheselka
{"title":"基于物理约束迭代反卷积算法的空间目标识别","authors":"J. Christou, E. Hege, S. Jefferies, M. Cheselka","doi":"10.1364/srs.1998.stub.2","DOIUrl":null,"url":null,"abstract":"A physically constrained iterative deconvolution algorithm is applied to both simulated and real artificial satellite (space object) observations obtained with adaptive optical systems. The problems associated with obtaining good point spread function information is discussed and the algorithm applied also permits reconstruction of not only the object but also the corresponding point spread functions.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Space Object Identification using a Physically Constrained Iterative Deconvolution Algorithm\",\"authors\":\"J. Christou, E. Hege, S. Jefferies, M. Cheselka\",\"doi\":\"10.1364/srs.1998.stub.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A physically constrained iterative deconvolution algorithm is applied to both simulated and real artificial satellite (space object) observations obtained with adaptive optical systems. The problems associated with obtaining good point spread function information is discussed and the algorithm applied also permits reconstruction of not only the object but also the corresponding point spread functions.\",\"PeriodicalId\":184407,\"journal\":{\"name\":\"Signal Recovery and Synthesis\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Recovery and Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1998.stub.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1998.stub.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将一种物理约束迭代反褶积算法应用于自适应光学系统获得的模拟和实际人造卫星(空间物体)观测数据。讨论了获取良好的点扩展函数信息的相关问题,所采用的算法不仅可以重建目标,还可以重建相应的点扩展函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Space Object Identification using a Physically Constrained Iterative Deconvolution Algorithm
A physically constrained iterative deconvolution algorithm is applied to both simulated and real artificial satellite (space object) observations obtained with adaptive optical systems. The problems associated with obtaining good point spread function information is discussed and the algorithm applied also permits reconstruction of not only the object but also the corresponding point spread functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase retrieval in the Fresnel transform system : A recursive algorithm Direct Method for Phase Retrieval from the Intensity of Cylindrical Wavefronts Protein Crystallography: From X-ray diffraction spots to a three-dimensional image Comparison of shift-and-add & bispectrum image reconstruction methods for astronomy in the near-infrared Phase retrieval and time-frequency methods in the measurement of ultrasnort laser pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1