使用深度学习架构的自动调制识别

Meng Zhang, Yuan Zeng, Zidong Han, Yi Gong
{"title":"使用深度学习架构的自动调制识别","authors":"Meng Zhang, Yuan Zeng, Zidong Han, Yi Gong","doi":"10.1109/SPAWC.2018.8446021","DOIUrl":null,"url":null,"abstract":"In this paper, we present an automatic modulation recognition framework for the detection of radio signals in a communication system. The framework considers both a deep convolutional neural network (CNN) and a long short term memory network. Further, we propose a pre-processing signal representation that combines the in-phase, quadrature and fourth-order statistics of the modulated signals. The presented data representation allows our CNN and LSTM models to achieve 8% improvements on our testing dataset. We compare the recognition accuracy of the proposed recognition methods with existing methods under various SNR values. Experimental results show that our methods perform better than the existing methods.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Automatic Modulation Recognition Using Deep Learning Architectures\",\"authors\":\"Meng Zhang, Yuan Zeng, Zidong Han, Yi Gong\",\"doi\":\"10.1109/SPAWC.2018.8446021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an automatic modulation recognition framework for the detection of radio signals in a communication system. The framework considers both a deep convolutional neural network (CNN) and a long short term memory network. Further, we propose a pre-processing signal representation that combines the in-phase, quadrature and fourth-order statistics of the modulated signals. The presented data representation allows our CNN and LSTM models to achieve 8% improvements on our testing dataset. We compare the recognition accuracy of the proposed recognition methods with existing methods under various SNR values. Experimental results show that our methods perform better than the existing methods.\",\"PeriodicalId\":240036,\"journal\":{\"name\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2018.8446021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8446021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

本文提出了一种用于通信系统中无线电信号检测的自动调制识别框架。该框架同时考虑了深度卷积神经网络(CNN)和长短期记忆网络。此外,我们提出了一种预处理信号表示,它结合了调制信号的同相、正交和四阶统计量。所呈现的数据表示允许我们的CNN和LSTM模型在我们的测试数据集上实现8%的改进。在不同信噪比下,将本文提出的识别方法与现有方法的识别精度进行了比较。实验结果表明,本文方法的性能优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Modulation Recognition Using Deep Learning Architectures
In this paper, we present an automatic modulation recognition framework for the detection of radio signals in a communication system. The framework considers both a deep convolutional neural network (CNN) and a long short term memory network. Further, we propose a pre-processing signal representation that combines the in-phase, quadrature and fourth-order statistics of the modulated signals. The presented data representation allows our CNN and LSTM models to achieve 8% improvements on our testing dataset. We compare the recognition accuracy of the proposed recognition methods with existing methods under various SNR values. Experimental results show that our methods perform better than the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Successive Cancellation Decoding of Polar Codes Analysis of Some Well-Rounded Lattices in Wiretap Channels Two-Way Full-Duplex MIMO with Hybrid TX-RX MSE Minimization and Interference Cancellation Minimum Energy Resource Allocation in FOG Radio Access Network with Fronthaul and Latency Constraints A Distance and Bandwidth Dependent Adaptive Modulation Scheme for THz Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1