分布式数据中心图像检索的组合特性

Di Yang, J. Liao, Q. Qi, Jingyu Wang, Haifeng Sun, Shantao Jiang
{"title":"分布式数据中心图像检索的组合特性","authors":"Di Yang, J. Liao, Q. Qi, Jingyu Wang, Haifeng Sun, Shantao Jiang","doi":"10.1109/PADSW.2014.7097871","DOIUrl":null,"url":null,"abstract":"Since the emergence of cloud datacenters provides an enormous amount of resources easily accessible to people, it is challenging to provide an efficient search framework in such a distributed environment. However, traditional search techniques only allow users to search images over exact-match keywords through a centralized index. These methods are insufficient to meet requirements of content based image retrieval (CBIR) and more powerful search frameworks are needed. In this paper, we present LCFIR, an effective image retrieval framework for fast content location in the distributed situation. It adopts the peer-to-peer paradigm and combines color and edge features. The basic idea is to construct multiple replicas of an image's index through exploiting the property of Locality Sensitive Hashing (LSH). Thus, the indexes of similar images are probabilistically gathered into the same node without the knowledge of any global information. The empirical results show that the system is able to yield high accuracy with load balancing, and only contacts a few number of the participating nodes.","PeriodicalId":421740,"journal":{"name":"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination feature for image retrieval in the distributed datacenter\",\"authors\":\"Di Yang, J. Liao, Q. Qi, Jingyu Wang, Haifeng Sun, Shantao Jiang\",\"doi\":\"10.1109/PADSW.2014.7097871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the emergence of cloud datacenters provides an enormous amount of resources easily accessible to people, it is challenging to provide an efficient search framework in such a distributed environment. However, traditional search techniques only allow users to search images over exact-match keywords through a centralized index. These methods are insufficient to meet requirements of content based image retrieval (CBIR) and more powerful search frameworks are needed. In this paper, we present LCFIR, an effective image retrieval framework for fast content location in the distributed situation. It adopts the peer-to-peer paradigm and combines color and edge features. The basic idea is to construct multiple replicas of an image's index through exploiting the property of Locality Sensitive Hashing (LSH). Thus, the indexes of similar images are probabilistically gathered into the same node without the knowledge of any global information. The empirical results show that the system is able to yield high accuracy with load balancing, and only contacts a few number of the participating nodes.\",\"PeriodicalId\":421740,\"journal\":{\"name\":\"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PADSW.2014.7097871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PADSW.2014.7097871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于云数据中心的出现为人们提供了大量易于访问的资源,因此在这样一个分布式环境中提供高效的搜索框架是一项挑战。然而,传统的搜索技术只允许用户通过集中索引在精确匹配的关键字上搜索图像。这些方法不足以满足基于内容的图像检索(CBIR)的要求,需要更强大的搜索框架。在本文中,我们提出了一种有效的图像检索框架LCFIR,用于在分布式情况下快速定位内容。它采用点对点模式,结合了颜色和边缘特征。其基本思想是通过利用局域敏感散列(Locality Sensitive hash, LSH)的特性来构建图像索引的多个副本。这样,在不知道任何全局信息的情况下,将相似图像的索引概率地聚集到同一节点。实验结果表明,在负载均衡的情况下,该系统能够产生较高的准确率,并且只接触少量的参与节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combination feature for image retrieval in the distributed datacenter
Since the emergence of cloud datacenters provides an enormous amount of resources easily accessible to people, it is challenging to provide an efficient search framework in such a distributed environment. However, traditional search techniques only allow users to search images over exact-match keywords through a centralized index. These methods are insufficient to meet requirements of content based image retrieval (CBIR) and more powerful search frameworks are needed. In this paper, we present LCFIR, an effective image retrieval framework for fast content location in the distributed situation. It adopts the peer-to-peer paradigm and combines color and edge features. The basic idea is to construct multiple replicas of an image's index through exploiting the property of Locality Sensitive Hashing (LSH). Thus, the indexes of similar images are probabilistically gathered into the same node without the knowledge of any global information. The empirical results show that the system is able to yield high accuracy with load balancing, and only contacts a few number of the participating nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal bandwidth allocation with dynamic multi-path routing for non-critical traffic in AFDX networks Sensor-free corner shape detection by wireless networks Accelerated variance reduction methods on GPU Fault-Tolerant bi-directional communications in web-based applications Performance analysis of HPC applications with irregular tree data structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1