混合hho -小波模型在微电网短期负荷预测中的应用

Thanh-Hoan Nguyen, Q. Pham, Vu-Thuy Nguyen, V. Trương, H. Nguyen, D. Truong
{"title":"混合hho -小波模型在微电网短期负荷预测中的应用","authors":"Thanh-Hoan Nguyen, Q. Pham, Vu-Thuy Nguyen, V. Trương, H. Nguyen, D. Truong","doi":"10.1109/GTSD54989.2022.9989027","DOIUrl":null,"url":null,"abstract":"Power load forecasting is an important issue in a microgrid (MG) energy management. Accurate load forecasting is urgently required for effective power management for MG. This paper proposes a new method for short-term load forecasting (STLF). This method uses both long and short data series provided for a Wavenet-based model inspired by a Long Short-Term Memory (LSTM), to forecast hourly load demand. To increase the accuracy of the prediction model, this study used the Harris Hawks Optimization (HHO) algorithm to include in the calculation in the Wavenet network. In order to demonstrate the effectiveness of the model, we work with the load data set of an MG model belonging to the Ho Chi Minh City power grid. The forecasting model is compared with the previous forecasting models. The results show that our proposed model outperforms other deep learning-based models in terms of root mean square error (RMSE) and mean absolute percentage error (MAPE).","PeriodicalId":125445,"journal":{"name":"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid HHO-Wavenet Model Applies in Short-term Load Forecasting for Microgrid System\",\"authors\":\"Thanh-Hoan Nguyen, Q. Pham, Vu-Thuy Nguyen, V. Trương, H. Nguyen, D. Truong\",\"doi\":\"10.1109/GTSD54989.2022.9989027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power load forecasting is an important issue in a microgrid (MG) energy management. Accurate load forecasting is urgently required for effective power management for MG. This paper proposes a new method for short-term load forecasting (STLF). This method uses both long and short data series provided for a Wavenet-based model inspired by a Long Short-Term Memory (LSTM), to forecast hourly load demand. To increase the accuracy of the prediction model, this study used the Harris Hawks Optimization (HHO) algorithm to include in the calculation in the Wavenet network. In order to demonstrate the effectiveness of the model, we work with the load data set of an MG model belonging to the Ho Chi Minh City power grid. The forecasting model is compared with the previous forecasting models. The results show that our proposed model outperforms other deep learning-based models in terms of root mean square error (RMSE) and mean absolute percentage error (MAPE).\",\"PeriodicalId\":125445,\"journal\":{\"name\":\"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GTSD54989.2022.9989027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GTSD54989.2022.9989027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电力负荷预测是微电网能源管理中的一个重要问题。准确的负荷预测是电网有效管理的迫切要求。本文提出了一种新的短期负荷预测方法。该方法利用长短期记忆(LSTM)模型提供的长、短数据序列来预测每小时的负荷需求。为了提高预测模型的准确性,本研究采用Harris Hawks Optimization (HHO)算法将其纳入Wavenet网络的计算中。为了验证该模型的有效性,我们以胡志明市电网的MG模型负荷数据集为例进行了研究。并与已有的预测模型进行了比较。结果表明,我们提出的模型在均方根误差(RMSE)和平均绝对百分比误差(MAPE)方面优于其他基于深度学习的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid HHO-Wavenet Model Applies in Short-term Load Forecasting for Microgrid System
Power load forecasting is an important issue in a microgrid (MG) energy management. Accurate load forecasting is urgently required for effective power management for MG. This paper proposes a new method for short-term load forecasting (STLF). This method uses both long and short data series provided for a Wavenet-based model inspired by a Long Short-Term Memory (LSTM), to forecast hourly load demand. To increase the accuracy of the prediction model, this study used the Harris Hawks Optimization (HHO) algorithm to include in the calculation in the Wavenet network. In order to demonstrate the effectiveness of the model, we work with the load data set of an MG model belonging to the Ho Chi Minh City power grid. The forecasting model is compared with the previous forecasting models. The results show that our proposed model outperforms other deep learning-based models in terms of root mean square error (RMSE) and mean absolute percentage error (MAPE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design a Fuel Battery Operation Model for a Car Application for Training Key Information Extraction from Mobile-Captured Vietnamese Receipt Images using Graph Neural Networks Approach Indoor Mobile Robot Positioning using Sensor Fusion A Steering Strategy for Self-Driving Automobile Systems Based on Lane-Line Detection The Improved Sliding Mode Observer for Sensorless Speed Control of Permanent Magnet Synchronous Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1