进化与时间差异学习学习玩《吃豆女士

P. Burrow, S. Lucas
{"title":"进化与时间差异学习学习玩《吃豆女士","authors":"P. Burrow, S. Lucas","doi":"10.1109/CIG.2009.5286495","DOIUrl":null,"url":null,"abstract":"This paper investigates various factors that affect the ability of a system to learn to play Ms. Pac-Man. For this study Ms. Pac-Man provides a game of appropriate complexity, and has the advantage that in recent years there have been many other papers published on systems that learn to play this game. The results indicate that Temporal Difference Learning (TDL) performs most reliably with a tabular function approximator, and that the reward structure chosen can have a dramatic impact on performance. When using a multi-layer perceptron as a function approximator, evolution outperforms TDL by a significant margin. Overall, the best results were obtained by evolving multi-layer perceptrons.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Evolution versus Temporal Difference Learning for learning to play Ms. Pac-Man\",\"authors\":\"P. Burrow, S. Lucas\",\"doi\":\"10.1109/CIG.2009.5286495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates various factors that affect the ability of a system to learn to play Ms. Pac-Man. For this study Ms. Pac-Man provides a game of appropriate complexity, and has the advantage that in recent years there have been many other papers published on systems that learn to play this game. The results indicate that Temporal Difference Learning (TDL) performs most reliably with a tabular function approximator, and that the reward structure chosen can have a dramatic impact on performance. When using a multi-layer perceptron as a function approximator, evolution outperforms TDL by a significant margin. Overall, the best results were obtained by evolving multi-layer perceptrons.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文研究了影响系统学习玩《吃豆女士》能力的各种因素。在这项研究中,《吃豆人》提供了一款具有适当复杂性的游戏,其优势在于近年来已经有许多关于学习玩这款游戏的系统的论文发表。结果表明,时间差异学习(TDL)在表函数近似器下的表现最为可靠,并且所选择的奖励结构对学习效果有显著影响。当使用多层感知器作为函数逼近器时,进化的性能明显优于TDL。总体而言,进化多层感知器获得了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution versus Temporal Difference Learning for learning to play Ms. Pac-Man
This paper investigates various factors that affect the ability of a system to learn to play Ms. Pac-Man. For this study Ms. Pac-Man provides a game of appropriate complexity, and has the advantage that in recent years there have been many other papers published on systems that learn to play this game. The results indicate that Temporal Difference Learning (TDL) performs most reliably with a tabular function approximator, and that the reward structure chosen can have a dramatic impact on performance. When using a multi-layer perceptron as a function approximator, evolution outperforms TDL by a significant margin. Overall, the best results were obtained by evolving multi-layer perceptrons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal strategy selection of non-player character on real time strategy game using a speciated evolutionary algorithm Formal analysis and algorithms for extracting coordinate systems of games Evolving driving controllers using Genetic Programming CHANCEPROBCUT: Forward pruning in chance nodes Evolving coordinated spatial tactics for autonomous entities using influence maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1