朝着一个统一的框架来跟踪和分析人体运动

N. Krahnstoever, M. Yeasin, Rajeev Sharma
{"title":"朝着一个统一的框架来跟踪和分析人体运动","authors":"N. Krahnstoever, M. Yeasin, Rajeev Sharma","doi":"10.1109/EVENT.2001.938865","DOIUrl":null,"url":null,"abstract":"We propose a framework for detecting, tracking and analyzing non-rigid motion based on learned motion patterns. The framework features an appearance based approach to represent the spatial information and hidden Markov models (HMM) to encode the temporal dynamics of the time varying visual patterns. The low level spatial feature extraction is fused with the temporal analysis, providing a unified spatio-temporal approach to common detection, tracking and classification problems. This is a promising approach for many classes of human motion patterns. Visual tracking is achieved by extracting the most probable sequence of target locations from a video stream using a combination of random sampling and the forward procedure from HMM theory. The method allows us to perform a set of important tasks such as activity recognition, gait-analysis and keyframe extraction. The efficacy of the method is shown on both natural and synthetic test sequences.","PeriodicalId":375539,"journal":{"name":"Proceedings IEEE Workshop on Detection and Recognition of Events in Video","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Towards a unified framework for tracking and analysis of human motion\",\"authors\":\"N. Krahnstoever, M. Yeasin, Rajeev Sharma\",\"doi\":\"10.1109/EVENT.2001.938865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a framework for detecting, tracking and analyzing non-rigid motion based on learned motion patterns. The framework features an appearance based approach to represent the spatial information and hidden Markov models (HMM) to encode the temporal dynamics of the time varying visual patterns. The low level spatial feature extraction is fused with the temporal analysis, providing a unified spatio-temporal approach to common detection, tracking and classification problems. This is a promising approach for many classes of human motion patterns. Visual tracking is achieved by extracting the most probable sequence of target locations from a video stream using a combination of random sampling and the forward procedure from HMM theory. The method allows us to perform a set of important tasks such as activity recognition, gait-analysis and keyframe extraction. The efficacy of the method is shown on both natural and synthetic test sequences.\",\"PeriodicalId\":375539,\"journal\":{\"name\":\"Proceedings IEEE Workshop on Detection and Recognition of Events in Video\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Workshop on Detection and Recognition of Events in Video\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVENT.2001.938865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Detection and Recognition of Events in Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVENT.2001.938865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

我们提出了一个基于学习运动模式的检测、跟踪和分析非刚性运动的框架。该框架采用基于外观的方法来表示空间信息,并使用隐马尔可夫模型(HMM)来编码时变视觉模式的时间动态。将低层次空间特征提取与时间分析相融合,为常见的检测、跟踪和分类问题提供统一的时空方法。这是一种很有前途的方法,适用于许多类型的人类运动模式。利用随机抽样和HMM理论的前向过程相结合,从视频流中提取最可能的目标位置序列,从而实现视觉跟踪。该方法允许我们执行一系列重要的任务,如活动识别,步态分析和关键帧提取。该方法的有效性在天然和合成测试序列上都得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a unified framework for tracking and analysis of human motion
We propose a framework for detecting, tracking and analyzing non-rigid motion based on learned motion patterns. The framework features an appearance based approach to represent the spatial information and hidden Markov models (HMM) to encode the temporal dynamics of the time varying visual patterns. The low level spatial feature extraction is fused with the temporal analysis, providing a unified spatio-temporal approach to common detection, tracking and classification problems. This is a promising approach for many classes of human motion patterns. Visual tracking is achieved by extracting the most probable sequence of target locations from a video stream using a combination of random sampling and the forward procedure from HMM theory. The method allows us to perform a set of important tasks such as activity recognition, gait-analysis and keyframe extraction. The efficacy of the method is shown on both natural and synthetic test sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal 3-D tracking and event detection via the particle filter Segmentation and recognition of continuous human activity Hierarchical unsupervised learning of facial expression categories View-invariant representation and learning of human action Detecting independently moving objects and their interactions in georeferenced airborne video
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1