基于近红外光谱的心理压力连通性分析

Rateb Katmah, Fares Al-Shargie, U. Tariq, F. Babiloni, Fadwa Al-Mughairbi, H. Al-Nashash
{"title":"基于近红外光谱的心理压力连通性分析","authors":"Rateb Katmah, Fares Al-Shargie, U. Tariq, F. Babiloni, Fadwa Al-Mughairbi, H. Al-Nashash","doi":"10.1109/BioSMART54244.2021.9677748","DOIUrl":null,"url":null,"abstract":"Stress is a major cause of many mental, psychological, emotional, behavioral, and physical disorders. Therefore, early detection of stress can help prevent many ailments and improve human health. In this study, we used a modified Stroop Color Word Task (SCWT) with time pressure and negative feedback to elicit two levels of stress at the workplace. We then assessed the level of stress using functional near-infrared spectroscopy (fNIRS) with multiple machine learning classifiers. We analyzed the fNIRS signals using partial directed coherence (PDC) to estimate the effective connectivity network between brain regions under stress. Our results showed that the proposed stress task reduced the cognitive performance and altered the connectivity network on the frontal region. The left frontal and left dorsolateral regions showed significantly higher connectivity under stress, p<0.05. Meanwhile, the right ventrolateral prefrontal cortex (VLPFC) showed a significant decrease in the connectivity network under stress. We achieved the highest classification performance using support vector machine (SVM) with an average classification accuracy of 99.93%. Our results highlight using fNIRS with PDC at the frontal brain region as a potential biomarker for stress.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Connectivity Analysis under Mental Stress using fNIRS\",\"authors\":\"Rateb Katmah, Fares Al-Shargie, U. Tariq, F. Babiloni, Fadwa Al-Mughairbi, H. Al-Nashash\",\"doi\":\"10.1109/BioSMART54244.2021.9677748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stress is a major cause of many mental, psychological, emotional, behavioral, and physical disorders. Therefore, early detection of stress can help prevent many ailments and improve human health. In this study, we used a modified Stroop Color Word Task (SCWT) with time pressure and negative feedback to elicit two levels of stress at the workplace. We then assessed the level of stress using functional near-infrared spectroscopy (fNIRS) with multiple machine learning classifiers. We analyzed the fNIRS signals using partial directed coherence (PDC) to estimate the effective connectivity network between brain regions under stress. Our results showed that the proposed stress task reduced the cognitive performance and altered the connectivity network on the frontal region. The left frontal and left dorsolateral regions showed significantly higher connectivity under stress, p<0.05. Meanwhile, the right ventrolateral prefrontal cortex (VLPFC) showed a significant decrease in the connectivity network under stress. We achieved the highest classification performance using support vector machine (SVM) with an average classification accuracy of 99.93%. Our results highlight using fNIRS with PDC at the frontal brain region as a potential biomarker for stress.\",\"PeriodicalId\":286026,\"journal\":{\"name\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioSMART54244.2021.9677748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

压力是许多精神、心理、情感、行为和身体疾病的主要原因。因此,及早发现压力有助于预防许多疾病,改善人体健康。在本研究中,我们使用了一个带有时间压力和负反馈的改进的Stroop颜色词任务(SCWT)来引出工作场所的两个水平的压力。然后,我们使用功能近红外光谱(fNIRS)和多个机器学习分类器来评估压力水平。我们利用部分定向相干(PDC)分析了fNIRS信号,以估计应激下脑区之间的有效连接网络。结果表明,压力任务降低了认知能力,改变了额叶区域的连接网络。应激条件下,左额叶区和左背外侧区连通性显著提高,p<0.05。同时,右侧腹外侧前额叶皮层(VLPFC)在应激下的连通性网络明显减少。我们使用支持向量机(SVM)实现了最高的分类性能,平均分类准确率为99.93%。我们的研究结果强调,在大脑额叶区域使用fNIRS与PDC作为压力的潜在生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Connectivity Analysis under Mental Stress using fNIRS
Stress is a major cause of many mental, psychological, emotional, behavioral, and physical disorders. Therefore, early detection of stress can help prevent many ailments and improve human health. In this study, we used a modified Stroop Color Word Task (SCWT) with time pressure and negative feedback to elicit two levels of stress at the workplace. We then assessed the level of stress using functional near-infrared spectroscopy (fNIRS) with multiple machine learning classifiers. We analyzed the fNIRS signals using partial directed coherence (PDC) to estimate the effective connectivity network between brain regions under stress. Our results showed that the proposed stress task reduced the cognitive performance and altered the connectivity network on the frontal region. The left frontal and left dorsolateral regions showed significantly higher connectivity under stress, p<0.05. Meanwhile, the right ventrolateral prefrontal cortex (VLPFC) showed a significant decrease in the connectivity network under stress. We achieved the highest classification performance using support vector machine (SVM) with an average classification accuracy of 99.93%. Our results highlight using fNIRS with PDC at the frontal brain region as a potential biomarker for stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Electrode Ranking Method for Single Trial Detection of EEG Error-Related Potentials Efficacy of AR Haptic Simulation for Nursing Student Education In silico study of sensitivity of polymeric prism-based surface plasmon resonance sensors based on graphene and molybdenum disulfide layers A Social Robot with Conversational Capabilities for Visitor Reception: Design and Framework MICSurv: Medical Image Clustering for Survival risk group identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1