基于超宽带和惯性传感的碰撞预测:实验评估

Aarti Singh, Neal Patwari, McKelvey
{"title":"基于超宽带和惯性传感的碰撞预测:实验评估","authors":"Aarti Singh, Neal Patwari, McKelvey","doi":"10.1109/ICAS49788.2021.9551118","DOIUrl":null,"url":null,"abstract":"Real-time proximity and collision detection via radio frequency (RF) distance measurements has application in smart helmets, drones, autonomous vehicles, and social distancing. In this paper we evaluate ACED, a range-based, infrastructure-free, distributed algorithm that utilizes inter-node range data and intra-node acceleration data to estimate the recent relative positions of each node and to predict impending collisions between any pair of nodes. The framework is tested and validated using experimental data from a testbed of mobile nodes which use ultra-wideband (UWB) ranging and inertial sensing. ACED is shown to outperform two state-of-the-art methods.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Collision Prediction using UWB and Inertial Sensing: Experimental Evaluation\",\"authors\":\"Aarti Singh, Neal Patwari, McKelvey\",\"doi\":\"10.1109/ICAS49788.2021.9551118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time proximity and collision detection via radio frequency (RF) distance measurements has application in smart helmets, drones, autonomous vehicles, and social distancing. In this paper we evaluate ACED, a range-based, infrastructure-free, distributed algorithm that utilizes inter-node range data and intra-node acceleration data to estimate the recent relative positions of each node and to predict impending collisions between any pair of nodes. The framework is tested and validated using experimental data from a testbed of mobile nodes which use ultra-wideband (UWB) ranging and inertial sensing. ACED is shown to outperform two state-of-the-art methods.\",\"PeriodicalId\":287105,\"journal\":{\"name\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAS49788.2021.9551118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过射频(RF)距离测量进行实时接近和碰撞检测,已应用于智能头盔、无人机、自动驾驶汽车和社交距离。在本文中,我们评估了一种基于范围的、无基础设施的分布式算法,它利用节点间距离数据和节点内加速数据来估计每个节点最近的相对位置,并预测任何一对节点之间即将发生的碰撞。该框架使用来自使用超宽带(UWB)测距和惯性传感的移动节点试验台的实验数据进行测试和验证。它比两种最先进的方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collision Prediction using UWB and Inertial Sensing: Experimental Evaluation
Real-time proximity and collision detection via radio frequency (RF) distance measurements has application in smart helmets, drones, autonomous vehicles, and social distancing. In this paper we evaluate ACED, a range-based, infrastructure-free, distributed algorithm that utilizes inter-node range data and intra-node acceleration data to estimate the recent relative positions of each node and to predict impending collisions between any pair of nodes. The framework is tested and validated using experimental data from a testbed of mobile nodes which use ultra-wideband (UWB) ranging and inertial sensing. ACED is shown to outperform two state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Automated Search for Underwater Threats Using Multistatic Sensor Fields by Incorporating Unconfirmed Track Information Matching Models for Crowd-Shipping Considering Shipper’s Acceptance Uncertainty Observational Learning: Imitation Through an Adaptive Probabilistic Approach Simultaneous Calibration of Positions, Orientations, and Time Offsets, Among Multiple Microphone Arrays Modified crop health monitoring and pesticide spraying system using NDVI and Semantic Segmentation: An AGROCOPTER based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1