{"title":"基于超宽带和惯性传感的碰撞预测:实验评估","authors":"Aarti Singh, Neal Patwari, McKelvey","doi":"10.1109/ICAS49788.2021.9551118","DOIUrl":null,"url":null,"abstract":"Real-time proximity and collision detection via radio frequency (RF) distance measurements has application in smart helmets, drones, autonomous vehicles, and social distancing. In this paper we evaluate ACED, a range-based, infrastructure-free, distributed algorithm that utilizes inter-node range data and intra-node acceleration data to estimate the recent relative positions of each node and to predict impending collisions between any pair of nodes. The framework is tested and validated using experimental data from a testbed of mobile nodes which use ultra-wideband (UWB) ranging and inertial sensing. ACED is shown to outperform two state-of-the-art methods.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Collision Prediction using UWB and Inertial Sensing: Experimental Evaluation\",\"authors\":\"Aarti Singh, Neal Patwari, McKelvey\",\"doi\":\"10.1109/ICAS49788.2021.9551118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time proximity and collision detection via radio frequency (RF) distance measurements has application in smart helmets, drones, autonomous vehicles, and social distancing. In this paper we evaluate ACED, a range-based, infrastructure-free, distributed algorithm that utilizes inter-node range data and intra-node acceleration data to estimate the recent relative positions of each node and to predict impending collisions between any pair of nodes. The framework is tested and validated using experimental data from a testbed of mobile nodes which use ultra-wideband (UWB) ranging and inertial sensing. ACED is shown to outperform two state-of-the-art methods.\",\"PeriodicalId\":287105,\"journal\":{\"name\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAS49788.2021.9551118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collision Prediction using UWB and Inertial Sensing: Experimental Evaluation
Real-time proximity and collision detection via radio frequency (RF) distance measurements has application in smart helmets, drones, autonomous vehicles, and social distancing. In this paper we evaluate ACED, a range-based, infrastructure-free, distributed algorithm that utilizes inter-node range data and intra-node acceleration data to estimate the recent relative positions of each node and to predict impending collisions between any pair of nodes. The framework is tested and validated using experimental data from a testbed of mobile nodes which use ultra-wideband (UWB) ranging and inertial sensing. ACED is shown to outperform two state-of-the-art methods.