基于分数阶微积分和卷积神经网络分割的简单手写多项式识别

F. M. Junior, T. P. D. Araujo, J. V. M. Sousa, N. J. C. D. Costa, R. Melo, A. Pinto, A. Saraiva
{"title":"基于分数阶微积分和卷积神经网络分割的简单手写多项式识别","authors":"F. M. Junior, T. P. D. Araujo, J. V. M. Sousa, N. J. C. D. Costa, R. Melo, A. Pinto, A. Saraiva","doi":"10.1109/BRACIS.2019.00051","DOIUrl":null,"url":null,"abstract":"This work introduces a method for recognizing handwritten polynomials using Convolutional Neural Networks (CNN) and Fractional Order Darwinian Particle Swarm Optimization (FODPSO). Segmentation of the input image is done with the FODPSO technique, which uses fractional derivative to control the rate of particle convergence. After segmentation, three CNN are used in the character recognition step: the first one classifies the individual symbols as numeric or non-numeric. The second network recognizes the numbers, while the third CNN recognize the non-numeric symbols. A heuristic procedure is used to build the polynomial, whose graph is finally plotted. A total of 264780 images containing symbols and numbers were used for training, validating, and testing the CNN, with an accuracy of approximately 99%.","PeriodicalId":335206,"journal":{"name":"Brazilian Conference on Intelligent Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Recognition of Simple Handwritten Polynomials Using Segmentation with Fractional Calculus and Convolutional Neural Networks\",\"authors\":\"F. M. Junior, T. P. D. Araujo, J. V. M. Sousa, N. J. C. D. Costa, R. Melo, A. Pinto, A. Saraiva\",\"doi\":\"10.1109/BRACIS.2019.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a method for recognizing handwritten polynomials using Convolutional Neural Networks (CNN) and Fractional Order Darwinian Particle Swarm Optimization (FODPSO). Segmentation of the input image is done with the FODPSO technique, which uses fractional derivative to control the rate of particle convergence. After segmentation, three CNN are used in the character recognition step: the first one classifies the individual symbols as numeric or non-numeric. The second network recognizes the numbers, while the third CNN recognize the non-numeric symbols. A heuristic procedure is used to build the polynomial, whose graph is finally plotted. A total of 264780 images containing symbols and numbers were used for training, validating, and testing the CNN, with an accuracy of approximately 99%.\",\"PeriodicalId\":335206,\"journal\":{\"name\":\"Brazilian Conference on Intelligent Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Conference on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2019.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Conference on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2019.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种使用卷积神经网络(CNN)和分数阶达尔文粒子群优化(FODPSO)识别手写多项式的方法。利用分数阶导数控制粒子收敛速度的FODPSO技术对输入图像进行分割。分割后,在字符识别步骤中使用三个CNN:第一个CNN将单个符号分类为数字或非数字。第二个网络识别数字,而第三个CNN识别非数字符号。采用启发式方法建立多项式,最后绘制出多项式图。总共264780张包含符号和数字的图像被用于训练、验证和测试CNN,准确率约为99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of Simple Handwritten Polynomials Using Segmentation with Fractional Calculus and Convolutional Neural Networks
This work introduces a method for recognizing handwritten polynomials using Convolutional Neural Networks (CNN) and Fractional Order Darwinian Particle Swarm Optimization (FODPSO). Segmentation of the input image is done with the FODPSO technique, which uses fractional derivative to control the rate of particle convergence. After segmentation, three CNN are used in the character recognition step: the first one classifies the individual symbols as numeric or non-numeric. The second network recognizes the numbers, while the third CNN recognize the non-numeric symbols. A heuristic procedure is used to build the polynomial, whose graph is finally plotted. A total of 264780 images containing symbols and numbers were used for training, validating, and testing the CNN, with an accuracy of approximately 99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Incremental MaxSAT-Based Model to Learn Interpretable and Balanced Classification Rules Logic-Based Explanations for Linear Support Vector Classifiers with Reject Option Event Detection in Therapy Sessions for Children with Autism Augmenting a Physics-Informed Neural Network for the 2D Burgers Equation by Addition of Solution Data Points Single Image Super-Resolution Based on Capsule Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1