{"title":"变换器控制中锁相环时间常数对动态频率支持的影响","authors":"A. Pfendler, M. Coumont, J. Hanson","doi":"10.1109/UPEC55022.2022.9917944","DOIUrl":null,"url":null,"abstract":"The use of a phase-locked loop in grid-forming converter control is controversially discussed, as it implies a time delay to the converter’s response to grid disturbances. In literature, slowing down the PLL dynamics to create a retarded measured voltage and current phasor is discussed to virtually resemble synchronous generators’ inherent inertia. In this case study, the influence of the PLL time constant is investigated in a simple medium-voltage testbench with the standard cascaded control and the direct voltage control concept. The frequency, active power, direct and quadrature current of the converter-based generator are evaluated for different PLL time constants following an active power mismatch. The results show that slowing down the PLL has a small impact on the current and power infeed of both control concepts. However, results of the standard cascaded and the direct voltage control are similar and a general advantage of the slower PLL cannot be concluded in this case study.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the PLL Time Constant in Converter Control on the Dynamic Frequency Support\",\"authors\":\"A. Pfendler, M. Coumont, J. Hanson\",\"doi\":\"10.1109/UPEC55022.2022.9917944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of a phase-locked loop in grid-forming converter control is controversially discussed, as it implies a time delay to the converter’s response to grid disturbances. In literature, slowing down the PLL dynamics to create a retarded measured voltage and current phasor is discussed to virtually resemble synchronous generators’ inherent inertia. In this case study, the influence of the PLL time constant is investigated in a simple medium-voltage testbench with the standard cascaded control and the direct voltage control concept. The frequency, active power, direct and quadrature current of the converter-based generator are evaluated for different PLL time constants following an active power mismatch. The results show that slowing down the PLL has a small impact on the current and power infeed of both control concepts. However, results of the standard cascaded and the direct voltage control are similar and a general advantage of the slower PLL cannot be concluded in this case study.\",\"PeriodicalId\":371561,\"journal\":{\"name\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC55022.2022.9917944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of the PLL Time Constant in Converter Control on the Dynamic Frequency Support
The use of a phase-locked loop in grid-forming converter control is controversially discussed, as it implies a time delay to the converter’s response to grid disturbances. In literature, slowing down the PLL dynamics to create a retarded measured voltage and current phasor is discussed to virtually resemble synchronous generators’ inherent inertia. In this case study, the influence of the PLL time constant is investigated in a simple medium-voltage testbench with the standard cascaded control and the direct voltage control concept. The frequency, active power, direct and quadrature current of the converter-based generator are evaluated for different PLL time constants following an active power mismatch. The results show that slowing down the PLL has a small impact on the current and power infeed of both control concepts. However, results of the standard cascaded and the direct voltage control are similar and a general advantage of the slower PLL cannot be concluded in this case study.