计算机科学中的对偶性*

M. Gehrke
{"title":"计算机科学中的对偶性*","authors":"M. Gehrke","doi":"10.1145/2933575.2934575","DOIUrl":null,"url":null,"abstract":"This is a paper on Stone duality in computer science with special focus on topics with applications in formal language theory. In Section 2 we give a general overview of Stone duality in its various forms: for Boolean algebras, distributive lattices, and frames. For distributive lattices, we discuss both Stone and Priestley duality. We identify how to move between the different dualities and which dual spaces carry the Scott topology. We then focus on three themes.The first theme is additional operations on distributive lattices and Boolean algebras. Additional operations arise in denotational semantics in the form of predicate transformers. In verification they occur in the form of modal operators. They play an essential rôle in Eilenberg’s variety theorem in the form of quotient operations. Quotient operations are unary instantiations of residual operators which are dual to the operations in the profinite algebras of algebraic language theory. We discuss additional operations in Section 3.The second theme is that of hyperspaces, that is, spaces of subsets of an underlying space. Some classes of algebras may be seen as the class of algebras for a functor. In the case of predicate transformers the dual functors are hyperspace constructions such as the Plotkin, Smyth, and Hoare powerdomain constructions. The algebras-for-a-functor point of view is central to the coalgebraic study of modal logic and to the solution of domain equations. In the algebraic theory of formal languages various hyperspace-related product constructions, such as block and Schützenberger products, are used to study complexity hierarchies. We describe a construction, similar to the Schützenberger product, which is dual to adding a layer of quantification to formulas describing formal languages. We discuss hyperspaces in Section 4.The final theme is that of \"equations\". These are pairs of elements of dual spaces. They arise via the duality between subalgebras and quotient spaces and have provided one of the most successful tools for obtaining decidability results for classes of regular languages. The perspective provided by duality allows us to obtain a notion of equations for the study of arbitrary formal languages. Equations in language theory is the topic of Section 5.","PeriodicalId":206395,"journal":{"name":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Duality in Computer Science *\",\"authors\":\"M. Gehrke\",\"doi\":\"10.1145/2933575.2934575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a paper on Stone duality in computer science with special focus on topics with applications in formal language theory. In Section 2 we give a general overview of Stone duality in its various forms: for Boolean algebras, distributive lattices, and frames. For distributive lattices, we discuss both Stone and Priestley duality. We identify how to move between the different dualities and which dual spaces carry the Scott topology. We then focus on three themes.The first theme is additional operations on distributive lattices and Boolean algebras. Additional operations arise in denotational semantics in the form of predicate transformers. In verification they occur in the form of modal operators. They play an essential rôle in Eilenberg’s variety theorem in the form of quotient operations. Quotient operations are unary instantiations of residual operators which are dual to the operations in the profinite algebras of algebraic language theory. We discuss additional operations in Section 3.The second theme is that of hyperspaces, that is, spaces of subsets of an underlying space. Some classes of algebras may be seen as the class of algebras for a functor. In the case of predicate transformers the dual functors are hyperspace constructions such as the Plotkin, Smyth, and Hoare powerdomain constructions. The algebras-for-a-functor point of view is central to the coalgebraic study of modal logic and to the solution of domain equations. In the algebraic theory of formal languages various hyperspace-related product constructions, such as block and Schützenberger products, are used to study complexity hierarchies. We describe a construction, similar to the Schützenberger product, which is dual to adding a layer of quantification to formulas describing formal languages. We discuss hyperspaces in Section 4.The final theme is that of \\\"equations\\\". These are pairs of elements of dual spaces. They arise via the duality between subalgebras and quotient spaces and have provided one of the most successful tools for obtaining decidability results for classes of regular languages. The perspective provided by duality allows us to obtain a notion of equations for the study of arbitrary formal languages. Equations in language theory is the topic of Section 5.\",\"PeriodicalId\":206395,\"journal\":{\"name\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933575.2934575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933575.2934575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

这是一篇关于计算机科学中的Stone对偶的论文,特别关注于形式语言理论中的应用。在第2节中,我们给出了各种形式的Stone对偶的总体概述:布尔代数,分配格和框架。对于分配格,我们讨论了Stone对偶和Priestley对偶。我们确定了如何在不同的对偶之间移动,以及哪些对偶空间携带Scott拓扑。然后我们关注三个主题。第一个主题是关于分配格和布尔代数的附加运算。额外的操作以谓词转换的形式出现在指称语义中。在验证中,它们以模态运算符的形式出现。它们以商运算的形式在Eilenberg的变分定理rôle中起着重要的作用。商算子是残差算子的一元实例,残差算子是代数语言理论中无限代数中残差算子的对偶。我们将在第3节讨论其他操作。第二个主题是超空间,即底层空间子集的空间。某些代数类可以看作是函子的代数类。在谓词变换的情况下,对偶函子是超空间结构,如Plotkin, Smyth和Hoare幂域结构。函子的代数观点是模态逻辑和域方程解的共代数研究的核心。在形式语言的代数理论中,各种与超空间相关的积结构,如块积和sch岑伯格积,被用来研究复杂性层次。我们描述了一个类似于sch岑伯格积的结构,它是对偶的,为描述形式语言的公式添加了一层量化。我们将在第4节中讨论超空间。最后一个主题是“方程式”。这些是对偶空间的元素对。它们是由子代数和商空间之间的对偶性产生的,并为正则语言类的可判决性结果的获得提供了最成功的工具之一。对偶提供的视角使我们能够获得研究任意形式语言的方程概念。语言理论中的方程是第5节的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Duality in Computer Science *
This is a paper on Stone duality in computer science with special focus on topics with applications in formal language theory. In Section 2 we give a general overview of Stone duality in its various forms: for Boolean algebras, distributive lattices, and frames. For distributive lattices, we discuss both Stone and Priestley duality. We identify how to move between the different dualities and which dual spaces carry the Scott topology. We then focus on three themes.The first theme is additional operations on distributive lattices and Boolean algebras. Additional operations arise in denotational semantics in the form of predicate transformers. In verification they occur in the form of modal operators. They play an essential rôle in Eilenberg’s variety theorem in the form of quotient operations. Quotient operations are unary instantiations of residual operators which are dual to the operations in the profinite algebras of algebraic language theory. We discuss additional operations in Section 3.The second theme is that of hyperspaces, that is, spaces of subsets of an underlying space. Some classes of algebras may be seen as the class of algebras for a functor. In the case of predicate transformers the dual functors are hyperspace constructions such as the Plotkin, Smyth, and Hoare powerdomain constructions. The algebras-for-a-functor point of view is central to the coalgebraic study of modal logic and to the solution of domain equations. In the algebraic theory of formal languages various hyperspace-related product constructions, such as block and Schützenberger products, are used to study complexity hierarchies. We describe a construction, similar to the Schützenberger product, which is dual to adding a layer of quantification to formulas describing formal languages. We discuss hyperspaces in Section 4.The final theme is that of "equations". These are pairs of elements of dual spaces. They arise via the duality between subalgebras and quotient spaces and have provided one of the most successful tools for obtaining decidability results for classes of regular languages. The perspective provided by duality allows us to obtain a notion of equations for the study of arbitrary formal languages. Equations in language theory is the topic of Section 5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative Algebraic Reasoning Differential Refinement Logic* Minimization of Symbolic Tree Automata Graphs of relational structures: restricted types The Complexity of Coverability in ν-Petri Nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1