用深度神经网络自动探测e-木卫四太阳射电暴

Fernández Ruiz Mario, Bussons Gordo Javier, P. Manuel, Monstein Christian
{"title":"用深度神经网络自动探测e-木卫四太阳射电暴","authors":"Fernández Ruiz Mario, Bussons Gordo Javier, P. Manuel, Monstein Christian","doi":"10.23919/AT-AP-RASC54737.2022.9814298","DOIUrl":null,"url":null,"abstract":"The aim of this work is to build a complete system based on deep neural networks for automated burst recognition in radio spectrograms delivered by ground-based solar observatories.In this summary paper, the automatic system is described stage by stage and preliminary results for a sample observatory are presented.","PeriodicalId":356067,"journal":{"name":"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)","volume":"48 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic detection of e-Callisto solar radio bursts by Deep Neural Networks\",\"authors\":\"Fernández Ruiz Mario, Bussons Gordo Javier, P. Manuel, Monstein Christian\",\"doi\":\"10.23919/AT-AP-RASC54737.2022.9814298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to build a complete system based on deep neural networks for automated burst recognition in radio spectrograms delivered by ground-based solar observatories.In this summary paper, the automatic system is described stage by stage and preliminary results for a sample observatory are presented.\",\"PeriodicalId\":356067,\"journal\":{\"name\":\"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)\",\"volume\":\"48 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AT-AP-RASC54737.2022.9814298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AT-AP-RASC54737.2022.9814298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作的目的是建立一个基于深度神经网络的完整系统,用于在地面太阳天文台提供的射电频谱图中自动识别突发。本文对自动系统进行了逐步的描述,并给出了一个样本天文台的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic detection of e-Callisto solar radio bursts by Deep Neural Networks
The aim of this work is to build a complete system based on deep neural networks for automated burst recognition in radio spectrograms delivered by ground-based solar observatories.In this summary paper, the automatic system is described stage by stage and preliminary results for a sample observatory are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Packaging of a Beamforming IC by Laser Enhanced Direct Print Additive Manufacturing (LE-DPAM) Multifunctional and Deployable Origami Antennas 3D Miniaturization Method and its Application to a Wearable Vivaldi Antenna Design of an impedance matched near field passive antenna for medical microwave radiometry Design of a mobile RFI monitoring station for DSA-2000 candidate sites surveys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1