{"title":"确定性微磨削中刀具痕迹的振动误差","authors":"J. Lambropoulos, Don Golin","doi":"10.1364/oft.1994.omb3","DOIUrl":null,"url":null,"abstract":"Cutter marks, often referred to as mid-spatial frequency errors during deterministic microgrinding, have been observed on the surface of ground spherical components in a series of experiments at the Center for Optics Manufacturing (COM) at the University of Rochester. A simple model is presented to explain the recent observation that the number of cutter marks N during deterministic microgrinding of spherical components is approximately equal to the ratio of tool rotational rate fT (rpm) to work rotational rate fW for a wide range of these parameters. The model is based on the fundamental assumption that both the tool and the work execute steady-state, forced harmonic oscillations, each at its respective driving frequency, and on the observation that for each revolution of the work, the tool executes fT/fW revolutions.","PeriodicalId":142307,"journal":{"name":"Optical Fabrication and Testing Workshop","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cutter Marks as Vibration-Induced Errors in Deterministic Microgrinding\",\"authors\":\"J. Lambropoulos, Don Golin\",\"doi\":\"10.1364/oft.1994.omb3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cutter marks, often referred to as mid-spatial frequency errors during deterministic microgrinding, have been observed on the surface of ground spherical components in a series of experiments at the Center for Optics Manufacturing (COM) at the University of Rochester. A simple model is presented to explain the recent observation that the number of cutter marks N during deterministic microgrinding of spherical components is approximately equal to the ratio of tool rotational rate fT (rpm) to work rotational rate fW for a wide range of these parameters. The model is based on the fundamental assumption that both the tool and the work execute steady-state, forced harmonic oscillations, each at its respective driving frequency, and on the observation that for each revolution of the work, the tool executes fT/fW revolutions.\",\"PeriodicalId\":142307,\"journal\":{\"name\":\"Optical Fabrication and Testing Workshop\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fabrication and Testing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/oft.1994.omb3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fabrication and Testing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/oft.1994.omb3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cutter Marks as Vibration-Induced Errors in Deterministic Microgrinding
Cutter marks, often referred to as mid-spatial frequency errors during deterministic microgrinding, have been observed on the surface of ground spherical components in a series of experiments at the Center for Optics Manufacturing (COM) at the University of Rochester. A simple model is presented to explain the recent observation that the number of cutter marks N during deterministic microgrinding of spherical components is approximately equal to the ratio of tool rotational rate fT (rpm) to work rotational rate fW for a wide range of these parameters. The model is based on the fundamental assumption that both the tool and the work execute steady-state, forced harmonic oscillations, each at its respective driving frequency, and on the observation that for each revolution of the work, the tool executes fT/fW revolutions.