一种从实际数据生成隶属函数的信息论方法

M. Makrehchi, M. Kamel
{"title":"一种从实际数据生成隶属函数的信息论方法","authors":"M. Makrehchi, M. Kamel","doi":"10.1109/NAFIPS.2003.1226753","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework for using real data to generate fuzzy membership functions which is one of the most challenging issues in the design of fuzzy systems. After modelling fuzzy membership functions by fuzzy partitions, an optimization technique based on a genetic algorithm is presented to find near optimal fuzzy partitions. The fitness function of the genetic algorithm is defined using Shannon entropy and mutual information measures to establish a mapping front real data to fuzzy variables. To generate fuzzy membership functions based on fuzzy partitions, some definitions and assumptions are also introduced. Numerical results are provided to demonstrate the effectiveness of the proposed approach.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An information theoretic approach to generating membership functions from real data\",\"authors\":\"M. Makrehchi, M. Kamel\",\"doi\":\"10.1109/NAFIPS.2003.1226753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a framework for using real data to generate fuzzy membership functions which is one of the most challenging issues in the design of fuzzy systems. After modelling fuzzy membership functions by fuzzy partitions, an optimization technique based on a genetic algorithm is presented to find near optimal fuzzy partitions. The fitness function of the genetic algorithm is defined using Shannon entropy and mutual information measures to establish a mapping front real data to fuzzy variables. To generate fuzzy membership functions based on fuzzy partitions, some definitions and assumptions are also introduced. Numerical results are provided to demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":153530,\"journal\":{\"name\":\"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2003.1226753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种利用真实数据生成模糊隶属函数的框架,这是模糊系统设计中最具挑战性的问题之一。在对模糊隶属函数进行模糊划分建模的基础上,提出了一种基于遗传算法的模糊划分近似优化方法。利用香农熵和互信息测度定义遗传算法的适应度函数,建立真实数据到模糊变量的映射关系。为了生成基于模糊划分的模糊隶属函数,引入了一些定义和假设。数值结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An information theoretic approach to generating membership functions from real data
In this paper, we propose a framework for using real data to generate fuzzy membership functions which is one of the most challenging issues in the design of fuzzy systems. After modelling fuzzy membership functions by fuzzy partitions, an optimization technique based on a genetic algorithm is presented to find near optimal fuzzy partitions. The fitness function of the genetic algorithm is defined using Shannon entropy and mutual information measures to establish a mapping front real data to fuzzy variables. To generate fuzzy membership functions based on fuzzy partitions, some definitions and assumptions are also introduced. Numerical results are provided to demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy-rough nearest-neighbor classification approach Fault detection and diagnosis in turbine engines using fuzzy logic How the number of measured dimensions affects fuzzy causal measures of vitamin therapy for hyperhomocysteinemia in stroke patients The fuzzy rough approximation decomposability Fuzzy-neuro system for bridge health monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1