基于像素梯度的全视场内预测缩放方法

Fan Jiang, Xin Jin, Kedeng Tong
{"title":"基于像素梯度的全视场内预测缩放方法","authors":"Fan Jiang, Xin Jin, Kedeng Tong","doi":"10.1109/VCIP53242.2021.9675380","DOIUrl":null,"url":null,"abstract":"Plenoptic 2.0 videos that record time-varying light fields by focused plenoptic cameras are prospective to immersive visual applications due to capturing dense sampled light fields with high spatial resolution in the rendered sub-apertures. In this paper, an intra prediction method is proposed for compressing multi-focus plenoptic 2.0 videos efficiently. Based on the estimation of zooming factor, novel gradient-feature-based zooming, adaptive-bilinear-interpolation-based tailoring and inverse-gradient-based boundary filtering are proposed and executed sequentially to generate accurate prediction candidates for weighted prediction working with adaptive skipping strategy. Experimental results demonstrate the superior performance of the proposed method relative to HEVC and state-of-the-art methods.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"2022 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pixel Gradient Based Zooming Method for Plenoptic Intra Prediction\",\"authors\":\"Fan Jiang, Xin Jin, Kedeng Tong\",\"doi\":\"10.1109/VCIP53242.2021.9675380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plenoptic 2.0 videos that record time-varying light fields by focused plenoptic cameras are prospective to immersive visual applications due to capturing dense sampled light fields with high spatial resolution in the rendered sub-apertures. In this paper, an intra prediction method is proposed for compressing multi-focus plenoptic 2.0 videos efficiently. Based on the estimation of zooming factor, novel gradient-feature-based zooming, adaptive-bilinear-interpolation-based tailoring and inverse-gradient-based boundary filtering are proposed and executed sequentially to generate accurate prediction candidates for weighted prediction working with adaptive skipping strategy. Experimental results demonstrate the superior performance of the proposed method relative to HEVC and state-of-the-art methods.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"2022 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过聚焦全光相机记录时变光场的Plenoptic 2.0视频有望实现沉浸式视觉应用,因为它可以在渲染的子孔径中以高空间分辨率捕获密集采样光场。本文提出了一种有效压缩多焦全光学2.0视频的帧内预测方法。在估计缩放因子的基础上,提出了基于梯度特征的缩放、基于自适应双线性插值的裁剪和基于反梯度的边界滤波,并依次执行,为自适应跳跃策略加权预测生成准确的预测候选者。实验结果表明,该方法相对于HEVC和现有方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pixel Gradient Based Zooming Method for Plenoptic Intra Prediction
Plenoptic 2.0 videos that record time-varying light fields by focused plenoptic cameras are prospective to immersive visual applications due to capturing dense sampled light fields with high spatial resolution in the rendered sub-apertures. In this paper, an intra prediction method is proposed for compressing multi-focus plenoptic 2.0 videos efficiently. Based on the estimation of zooming factor, novel gradient-feature-based zooming, adaptive-bilinear-interpolation-based tailoring and inverse-gradient-based boundary filtering are proposed and executed sequentially to generate accurate prediction candidates for weighted prediction working with adaptive skipping strategy. Experimental results demonstrate the superior performance of the proposed method relative to HEVC and state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Seq-Masks: Bridging the gap between appearance and gait modeling for video-based person re-identification Deep Metric Learning for Human Action Recognition with SlowFast Networks LRS-Net: invisible QR Code embedding, detection, and restoration Deep Color Constancy Using Spatio-Temporal Correlation of High-Speed Video Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1