基于多输出NARNN模型的多元时间序列数据预测

Hermansah, D. Rosadi, Abdurakhman, Herni Utami, G. Darmawan
{"title":"基于多输出NARNN模型的多元时间序列数据预测","authors":"Hermansah, D. Rosadi, Abdurakhman, Herni Utami, G. Darmawan","doi":"10.2991/ASSEHR.K.210305.041","DOIUrl":null,"url":null,"abstract":"This research proposes the multi-output Nonlinear Autoregressive Neural Network (NARNN) method to forecast multivariate time series data containing the input layer, one hidden layer, and the output layer. The multi-output NARNN method is performed by applying the logistic activation function and the resilient backpropagation learning algorithm. The stage of determining the input variable is chosen based on the number of data frequencies. The number of neurons in the hidden layer is half of the number of input variables. Simulation and empirical studies are conducted to test whether the proposed method works well for multivariate time series data forecasting. The simulation results show that the best performance is the simulation data generated from the MESTAR nonlinear model. The simulation study results are as expected. Empirical studies on Indonesia’s inflation and Bank Indonesia interest rate data show that the multioutput NARNN method provides better forecasting accuracy than the VAR, VMA, and VARMA methods with a total MSE value of 0.054655 and a total MAPE of 0.026853 in the testing data.","PeriodicalId":378773,"journal":{"name":"Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multivariate Time Series Data Forecasting Using Multi-Output NARNN Model\",\"authors\":\"Hermansah, D. Rosadi, Abdurakhman, Herni Utami, G. Darmawan\",\"doi\":\"10.2991/ASSEHR.K.210305.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes the multi-output Nonlinear Autoregressive Neural Network (NARNN) method to forecast multivariate time series data containing the input layer, one hidden layer, and the output layer. The multi-output NARNN method is performed by applying the logistic activation function and the resilient backpropagation learning algorithm. The stage of determining the input variable is chosen based on the number of data frequencies. The number of neurons in the hidden layer is half of the number of input variables. Simulation and empirical studies are conducted to test whether the proposed method works well for multivariate time series data forecasting. The simulation results show that the best performance is the simulation data generated from the MESTAR nonlinear model. The simulation study results are as expected. Empirical studies on Indonesia’s inflation and Bank Indonesia interest rate data show that the multioutput NARNN method provides better forecasting accuracy than the VAR, VMA, and VARMA methods with a total MSE value of 0.054655 and a total MAPE of 0.026853 in the testing data.\",\"PeriodicalId\":378773,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020)\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/ASSEHR.K.210305.041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ASSEHR.K.210305.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种多输出非线性自回归神经网络(NARNN)方法来预测包含输入层、一个隐藏层和输出层的多元时间序列数据。采用逻辑激活函数和弹性反向传播学习算法实现多输出神经网络。确定输入变量的阶段是根据数据频率的数量来选择的。隐藏层的神经元数量是输入变量数量的一半。通过仿真和实证研究验证了该方法对多变量时间序列数据的预测效果。仿真结果表明,由MESTAR非线性模型生成的仿真数据性能最好。仿真研究结果与预期一致。对印度尼西亚通货膨胀和印度尼西亚银行利率数据的实证研究表明,多输出NARNN方法的预测精度优于VAR、VMA和VARMA方法,测试数据的总MSE值为0.054655,总MAPE值为0.026853。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multivariate Time Series Data Forecasting Using Multi-Output NARNN Model
This research proposes the multi-output Nonlinear Autoregressive Neural Network (NARNN) method to forecast multivariate time series data containing the input layer, one hidden layer, and the output layer. The multi-output NARNN method is performed by applying the logistic activation function and the resilient backpropagation learning algorithm. The stage of determining the input variable is chosen based on the number of data frequencies. The number of neurons in the hidden layer is half of the number of input variables. Simulation and empirical studies are conducted to test whether the proposed method works well for multivariate time series data forecasting. The simulation results show that the best performance is the simulation data generated from the MESTAR nonlinear model. The simulation study results are as expected. Empirical studies on Indonesia’s inflation and Bank Indonesia interest rate data show that the multioutput NARNN method provides better forecasting accuracy than the VAR, VMA, and VARMA methods with a total MSE value of 0.054655 and a total MAPE of 0.026853 in the testing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microtremors Measurement Around Dengkeng Fault Line in Central Java The Role of Collaborative Learning Based STSE in Acid Base Chemistry: Effects on Students’ Motivation The Effect of Leaf-Waste Type and Bioconversion Ability Based on Feed Conversion Ratio in Black Soldiers Fly Larvae (Hermetia illucens, L.) Development of Inquiry-Based Multimedia Learning Module with PhET Simulation in Newton’s Law of Motion The Effect of Introduction, Connection, Application, Reflection, and Extension (ICARE) towards Students’ Chemistry Learning Outcome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1