基于视觉的拥挤行人检测

Shih-Shinh Huang, Chun-Yuan Chen
{"title":"基于视觉的拥挤行人检测","authors":"Shih-Shinh Huang, Chun-Yuan Chen","doi":"10.1109/ICCE-TW.2015.7216929","DOIUrl":null,"url":null,"abstract":"Pedestrian detection and counting is an important topic in developing an intelligent surveillance system. In this work, we propose a vision-based system for detecting pedestrians in an image. Be robust to crowded scenes and adapt to incomplete foreground from background subtraction algorithm, expectation maximization (EM) algorithm is applied to impose the constraint of body part for achieving successful detection. A well-known dataset called CAVIAR is used to validate the effectiveness of the proposed method.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision-based crowded pedestrian detection\",\"authors\":\"Shih-Shinh Huang, Chun-Yuan Chen\",\"doi\":\"10.1109/ICCE-TW.2015.7216929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian detection and counting is an important topic in developing an intelligent surveillance system. In this work, we propose a vision-based system for detecting pedestrians in an image. Be robust to crowded scenes and adapt to incomplete foreground from background subtraction algorithm, expectation maximization (EM) algorithm is applied to impose the constraint of body part for achieving successful detection. A well-known dataset called CAVIAR is used to validate the effectiveness of the proposed method.\",\"PeriodicalId\":340402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2015.7216929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

行人检测与计数是智能监控系统开发中的一个重要课题。在这项工作中,我们提出了一个基于视觉的系统来检测图像中的行人。为了对拥挤场景的鲁棒性和适应背景减除算法对前景不完全的影响,采用期望最大化算法对人体部位进行约束,实现成功的检测。一个名为CAVIAR的知名数据集被用来验证所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vision-based crowded pedestrian detection
Pedestrian detection and counting is an important topic in developing an intelligent surveillance system. In this work, we propose a vision-based system for detecting pedestrians in an image. Be robust to crowded scenes and adapt to incomplete foreground from background subtraction algorithm, expectation maximization (EM) algorithm is applied to impose the constraint of body part for achieving successful detection. A well-known dataset called CAVIAR is used to validate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fuzzy-rough set based ontology for hybrid recommendation Monitoring system of patient position based on wireless body area sensor network Automation control algorithms in gas mixture for preterm infant oxygen therapy Interframe hole filling for DIBR in 3D videos Automatic recognition of audio event using dynamic local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1