参数和冲击相关变化的系统灵敏度分析

Mark Horridge, K. Pearson
{"title":"参数和冲击相关变化的系统灵敏度分析","authors":"Mark Horridge, K. Pearson","doi":"10.21642/gtap.tp30","DOIUrl":null,"url":null,"abstract":"We show how you can carry out systematic sensitivity analysis (SSA) with respect to parameters and/or shocks, which vary according to a specified covariance matrix. You can use the existing SSA tools in RunGTAP or RunGEM to do this if your model is implemented in GEMPACK. Those SSA tools assume that all parameters or shocks are varying independently (i.e., the distributions of all parameters or shocks are uncorrelated) or together (i.e., are completely correlated). The techniques in this paper remove those restrictions. However, users need to make small modifications to the TAB file for the model. Different modifications are needed for different SSA scenarios. Further, the standard SSA procedure built into RunGTAP and RunGEM allows you to compute the sensitivity of model results either with respect to variations in parameter values or with respect to variations in shock values, but you cannot vary both parameters and shocks at the same time. Our discussion concentrates on the parameter case. However, we later show how shock variation may be modelled as a type of parameter variation. This opens the door to simultaneous variation of shocks and parameters. We include worked examples of the techniques described, based on the standard GTAP Model.","PeriodicalId":281904,"journal":{"name":"GTAP Technical Paper Series","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Systematic Sensitivity Analysis with Respect to Correlated Variations in Parameters and Shocks\",\"authors\":\"Mark Horridge, K. Pearson\",\"doi\":\"10.21642/gtap.tp30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how you can carry out systematic sensitivity analysis (SSA) with respect to parameters and/or shocks, which vary according to a specified covariance matrix. You can use the existing SSA tools in RunGTAP or RunGEM to do this if your model is implemented in GEMPACK. Those SSA tools assume that all parameters or shocks are varying independently (i.e., the distributions of all parameters or shocks are uncorrelated) or together (i.e., are completely correlated). The techniques in this paper remove those restrictions. However, users need to make small modifications to the TAB file for the model. Different modifications are needed for different SSA scenarios. Further, the standard SSA procedure built into RunGTAP and RunGEM allows you to compute the sensitivity of model results either with respect to variations in parameter values or with respect to variations in shock values, but you cannot vary both parameters and shocks at the same time. Our discussion concentrates on the parameter case. However, we later show how shock variation may be modelled as a type of parameter variation. This opens the door to simultaneous variation of shocks and parameters. We include worked examples of the techniques described, based on the standard GTAP Model.\",\"PeriodicalId\":281904,\"journal\":{\"name\":\"GTAP Technical Paper Series\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GTAP Technical Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21642/gtap.tp30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GTAP Technical Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21642/gtap.tp30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们展示了如何对参数和/或冲击进行系统灵敏度分析(SSA),这些参数和/或冲击根据指定的协方差矩阵而变化。如果您的模型是在GEMPACK中实现的,您可以使用RunGTAP或RunGEM中现有的SSA工具来完成此操作。这些SSA工具假设所有参数或冲击是独立变化的(即,所有参数或冲击的分布是不相关的)或一起变化的(即,完全相关)。本文中的技术消除了这些限制。然而,用户需要对模型的TAB文件做一些小的修改。不同的SSA场景需要进行不同的修改。此外,RunGTAP和RunGEM中内置的标准SSA程序允许您计算模型结果的敏感性,无论是相对于参数值的变化还是相对于冲击值的变化,但您不能同时改变参数和冲击。我们的讨论集中在参数情况上。然而,我们稍后将展示如何将激波变化建模为一种参数变化。这为冲击和参数的同时变化打开了大门。我们包含了基于标准GTAP模型的所描述的技术的工作示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic Sensitivity Analysis with Respect to Correlated Variations in Parameters and Shocks
We show how you can carry out systematic sensitivity analysis (SSA) with respect to parameters and/or shocks, which vary according to a specified covariance matrix. You can use the existing SSA tools in RunGTAP or RunGEM to do this if your model is implemented in GEMPACK. Those SSA tools assume that all parameters or shocks are varying independently (i.e., the distributions of all parameters or shocks are uncorrelated) or together (i.e., are completely correlated). The techniques in this paper remove those restrictions. However, users need to make small modifications to the TAB file for the model. Different modifications are needed for different SSA scenarios. Further, the standard SSA procedure built into RunGTAP and RunGEM allows you to compute the sensitivity of model results either with respect to variations in parameter values or with respect to variations in shock values, but you cannot vary both parameters and shocks at the same time. Our discussion concentrates on the parameter case. However, we later show how shock variation may be modelled as a type of parameter variation. This opens the door to simultaneous variation of shocks and parameters. We include worked examples of the techniques described, based on the standard GTAP Model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modern Trade Theory for CGE Modelling: the Armington, Krugman and Melitz Models Extending the GTAP Data Base and Model to Cover Domestic Support Issues using the EU as Example New Estimates of Soil and Biomass Carbon Stocks for Global Economic Models Agro-ecological Zone Emission Factor (AEZ-EF) Model (v47) Analysis of Climate Policies with GDyn-E
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1