{"title":"误差超出最小距离的概率","authors":"Yuval Cassuto, Jehoshua Bruck","doi":"10.1109/ISIT.2004.1365561","DOIUrl":null,"url":null,"abstract":"The miscorrection probability of a list decoder is the probability that the decoder will have at least one noncausal codeword in its decoding sphere. Evaluating this probability is important when using a list-decoder as a conventional decoder since in that case we require the list to contain at most one codeword for most of the errors. A lower bound on the miscorrection is the main result. The key ingredient in the proof is a new combinatorial upper bound on the list-size for a general q-ary block code. This bound is tighter than the best known on large alphabets, and it is shown to be very close to the algebraic bound for Reed-Solomon codes. Finally we discuss two known upper bounds on the miscorrection probability and unify them for linear MDS codes.","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Miscorrection probability beyond the minimum distance\",\"authors\":\"Yuval Cassuto, Jehoshua Bruck\",\"doi\":\"10.1109/ISIT.2004.1365561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The miscorrection probability of a list decoder is the probability that the decoder will have at least one noncausal codeword in its decoding sphere. Evaluating this probability is important when using a list-decoder as a conventional decoder since in that case we require the list to contain at most one codeword for most of the errors. A lower bound on the miscorrection is the main result. The key ingredient in the proof is a new combinatorial upper bound on the list-size for a general q-ary block code. This bound is tighter than the best known on large alphabets, and it is shown to be very close to the algebraic bound for Reed-Solomon codes. Finally we discuss two known upper bounds on the miscorrection probability and unify them for linear MDS codes.\",\"PeriodicalId\":269907,\"journal\":{\"name\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Miscorrection probability beyond the minimum distance
The miscorrection probability of a list decoder is the probability that the decoder will have at least one noncausal codeword in its decoding sphere. Evaluating this probability is important when using a list-decoder as a conventional decoder since in that case we require the list to contain at most one codeword for most of the errors. A lower bound on the miscorrection is the main result. The key ingredient in the proof is a new combinatorial upper bound on the list-size for a general q-ary block code. This bound is tighter than the best known on large alphabets, and it is shown to be very close to the algebraic bound for Reed-Solomon codes. Finally we discuss two known upper bounds on the miscorrection probability and unify them for linear MDS codes.