自行车导航中的城市安全服务:我的智能手机可以监控我的路灯

Munshi Yusuf Alam, H. Anurag, Md. Shahrukh Imam, Sujoy Saha, M. Saha, S. Nandi, Sandip Chakraborty
{"title":"自行车导航中的城市安全服务:我的智能手机可以监控我的路灯","authors":"Munshi Yusuf Alam, H. Anurag, Md. Shahrukh Imam, Sujoy Saha, M. Saha, S. Nandi, Sandip Chakraborty","doi":"10.1109/SMARTCOMP50058.2020.00035","DOIUrl":null,"url":null,"abstract":"Existing street light monitoring systems use vehicle-borne sensor platforms, LiDAR etc. which are obtrusive for in-the-wild deployments. In this paper, we propose BikeL; a crowd sensed system to monitor street lighting conditions in a novel approach using smartphone sensors during Bike navigation. We identify the underlying issues and challenges from pilot experiments to make the system phone-invariant, robust, and user-friendly. We used regression models and unsupervised clustering to resolve these issues. We have carried out extensive experiments under various road type illumination scenarios and phones type covering more than 400 km. Over 80 night trips collecting 10,000 functional light pole samples to tune the system parameters. Results show that the overall system successfully detects both functioning and non-functioning light poles with good accuracy (F1 score > 0.85) and can produce uniformly calibrated illumination levels. This viable, economical, and easy to deploy solution can work effectively for under-developed regions of low and middle-economy countries.","PeriodicalId":346827,"journal":{"name":"2020 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Urban Safety as a Service During Bike Navigation: My Smartphone Can Monitor My Street-Lights\",\"authors\":\"Munshi Yusuf Alam, H. Anurag, Md. Shahrukh Imam, Sujoy Saha, M. Saha, S. Nandi, Sandip Chakraborty\",\"doi\":\"10.1109/SMARTCOMP50058.2020.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing street light monitoring systems use vehicle-borne sensor platforms, LiDAR etc. which are obtrusive for in-the-wild deployments. In this paper, we propose BikeL; a crowd sensed system to monitor street lighting conditions in a novel approach using smartphone sensors during Bike navigation. We identify the underlying issues and challenges from pilot experiments to make the system phone-invariant, robust, and user-friendly. We used regression models and unsupervised clustering to resolve these issues. We have carried out extensive experiments under various road type illumination scenarios and phones type covering more than 400 km. Over 80 night trips collecting 10,000 functional light pole samples to tune the system parameters. Results show that the overall system successfully detects both functioning and non-functioning light poles with good accuracy (F1 score > 0.85) and can produce uniformly calibrated illumination levels. This viable, economical, and easy to deploy solution can work effectively for under-developed regions of low and middle-economy countries.\",\"PeriodicalId\":346827,\"journal\":{\"name\":\"2020 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP50058.2020.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP50058.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现有的路灯监控系统使用车载传感器平台,激光雷达等,这对于野外部署来说是突兀的。本文中,我们提出BikeL;在自行车导航过程中使用智能手机传感器,以一种新颖的方式监测街道照明状况的人群传感系统。我们从试点实验中确定了潜在的问题和挑战,以使系统手机不变、健壮和用户友好。我们使用回归模型和无监督聚类来解决这些问题。我们在400多公里的道路类型照明场景和手机类型下进行了广泛的实验。超过80次夜间旅行收集了10,000个功能灯杆样本以调整系统参数。结果表明,整个系统成功地检测了功能灯杆和非功能灯杆,精度很高(F1分数> 0.85),并能产生统一的校准照明水平。这种可行、经济、易于部署的解决方案可以有效地适用于中低收入经济国家的欠发达地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Urban Safety as a Service During Bike Navigation: My Smartphone Can Monitor My Street-Lights
Existing street light monitoring systems use vehicle-borne sensor platforms, LiDAR etc. which are obtrusive for in-the-wild deployments. In this paper, we propose BikeL; a crowd sensed system to monitor street lighting conditions in a novel approach using smartphone sensors during Bike navigation. We identify the underlying issues and challenges from pilot experiments to make the system phone-invariant, robust, and user-friendly. We used regression models and unsupervised clustering to resolve these issues. We have carried out extensive experiments under various road type illumination scenarios and phones type covering more than 400 km. Over 80 night trips collecting 10,000 functional light pole samples to tune the system parameters. Results show that the overall system successfully detects both functioning and non-functioning light poles with good accuracy (F1 score > 0.85) and can produce uniformly calibrated illumination levels. This viable, economical, and easy to deploy solution can work effectively for under-developed regions of low and middle-economy countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Industry 4.0 Solutions for Interoperability: a Use Case about Tools and Tool Chains in the Arrowhead Tools Project A NodeRED-based dashboard to deploy pipelines on top of IoT infrastructure Enhanced Support of LWM2M in Low Power and Lossy Networks Simulating Smart Campus Applications in Edge and Fog Computing A Scalable Distributed System for Precision Irrigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1