{"title":"利用机器学习优化虚拟网络流量测量参数","authors":"Karyna Gogunska, C. Barakat, G. Urvoy-Keller","doi":"10.1109/CloudNet47604.2019.9064132","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of cloud networking and the widespread usage of virtualization, it becomes more and more complex to monitor this new virtual environment. Yet, monitoring remains crucial for network troubleshooting and analysis. Controlling the measurement footprint in the virtual network is one of the main priorities in the process of monitoring as resources are shared between the compute nodes of tenants and the measurement process itself. In this paper, first, we assess the capability of machine learning to predict measurement impact on the ongoing traffic between virtual machines; second, we propose a data-driven solution that is able to provide optimal monitoring parameters for virtual network measurement with minimum traffic interference.","PeriodicalId":340890,"journal":{"name":"2019 IEEE 8th International Conference on Cloud Networking (CloudNet)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning optimal traffic measurement parameters in virtual networks with machine learning\",\"authors\":\"Karyna Gogunska, C. Barakat, G. Urvoy-Keller\",\"doi\":\"10.1109/CloudNet47604.2019.9064132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing popularity of cloud networking and the widespread usage of virtualization, it becomes more and more complex to monitor this new virtual environment. Yet, monitoring remains crucial for network troubleshooting and analysis. Controlling the measurement footprint in the virtual network is one of the main priorities in the process of monitoring as resources are shared between the compute nodes of tenants and the measurement process itself. In this paper, first, we assess the capability of machine learning to predict measurement impact on the ongoing traffic between virtual machines; second, we propose a data-driven solution that is able to provide optimal monitoring parameters for virtual network measurement with minimum traffic interference.\",\"PeriodicalId\":340890,\"journal\":{\"name\":\"2019 IEEE 8th International Conference on Cloud Networking (CloudNet)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th International Conference on Cloud Networking (CloudNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudNet47604.2019.9064132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet47604.2019.9064132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tuning optimal traffic measurement parameters in virtual networks with machine learning
With the increasing popularity of cloud networking and the widespread usage of virtualization, it becomes more and more complex to monitor this new virtual environment. Yet, monitoring remains crucial for network troubleshooting and analysis. Controlling the measurement footprint in the virtual network is one of the main priorities in the process of monitoring as resources are shared between the compute nodes of tenants and the measurement process itself. In this paper, first, we assess the capability of machine learning to predict measurement impact on the ongoing traffic between virtual machines; second, we propose a data-driven solution that is able to provide optimal monitoring parameters for virtual network measurement with minimum traffic interference.