一种新的微电网模型扩展图策略

Angie K. Reyes, A. Hernández, R. M. Gutiérrez, Nicolás Bolívar, Diego A. Jimenez, J. Bastidas, J. Solano
{"title":"一种新的微电网模型扩展图策略","authors":"Angie K. Reyes, A. Hernández, R. M. Gutiérrez, Nicolás Bolívar, Diego A. Jimenez, J. Bastidas, J. Solano","doi":"10.1109/SEST.2019.8849117","DOIUrl":null,"url":null,"abstract":"Microgrids with renewable distributed generation appears to be a good alternative to provide electricity for rural areas and isolated zones. However, these microgrids presents relatively low robustness due to their distributed generation topology with lack of dominant nodes to absorb and compensate instabilities, and intermittent energy availability. This work presents a novel strategy to model microgrids in an extended graph model, generating additional model embedded information, essential for optimization processes in the quest of robustness and economy, among other objectives. The traditional impedance model of microgrid is complemented by an extended graph integrating additional information of grids elements such as saturation, current and voltage limits or energy resource availability. This paper presents the extended graph developed model, which yields to a concise representation of an entire microgrid system, as well as a set of graph metrics usable for electrical grid evaluation. The presented model and metrics show to be useful to store, in a single and simple model, valuable information for design, evaluation and operation of microgrid systems.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"527 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Extended Graph Strategy to Model Microgrids\",\"authors\":\"Angie K. Reyes, A. Hernández, R. M. Gutiérrez, Nicolás Bolívar, Diego A. Jimenez, J. Bastidas, J. Solano\",\"doi\":\"10.1109/SEST.2019.8849117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microgrids with renewable distributed generation appears to be a good alternative to provide electricity for rural areas and isolated zones. However, these microgrids presents relatively low robustness due to their distributed generation topology with lack of dominant nodes to absorb and compensate instabilities, and intermittent energy availability. This work presents a novel strategy to model microgrids in an extended graph model, generating additional model embedded information, essential for optimization processes in the quest of robustness and economy, among other objectives. The traditional impedance model of microgrid is complemented by an extended graph integrating additional information of grids elements such as saturation, current and voltage limits or energy resource availability. This paper presents the extended graph developed model, which yields to a concise representation of an entire microgrid system, as well as a set of graph metrics usable for electrical grid evaluation. The presented model and metrics show to be useful to store, in a single and simple model, valuable information for design, evaluation and operation of microgrid systems.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"527 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8849117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

具有可再生分布式发电的微电网似乎是为农村地区和偏远地区提供电力的一个很好的替代方案。然而,这些微电网由于其分布式发电拓扑结构,缺乏主要节点来吸收和补偿不稳定性,以及间歇性的能源可用性,因此鲁棒性相对较低。这项工作提出了一种新的策略,在扩展图模型中对微电网进行建模,生成额外的模型嵌入信息,这对于追求鲁棒性和经济性等目标的优化过程至关重要。传统的微电网阻抗模型被一个扩展图所补充,该扩展图集成了电网元素的附加信息,如饱和、电流和电压限制或能源可用性。本文提出了扩展的图开发模型,该模型可以简洁地表示整个微电网系统,并提供了一套可用于电网评估的图度量。所提出的模型和指标表明,在一个单一的和简单的模型中存储有价值的信息,用于微电网系统的设计、评估和运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Extended Graph Strategy to Model Microgrids
Microgrids with renewable distributed generation appears to be a good alternative to provide electricity for rural areas and isolated zones. However, these microgrids presents relatively low robustness due to their distributed generation topology with lack of dominant nodes to absorb and compensate instabilities, and intermittent energy availability. This work presents a novel strategy to model microgrids in an extended graph model, generating additional model embedded information, essential for optimization processes in the quest of robustness and economy, among other objectives. The traditional impedance model of microgrid is complemented by an extended graph integrating additional information of grids elements such as saturation, current and voltage limits or energy resource availability. This paper presents the extended graph developed model, which yields to a concise representation of an entire microgrid system, as well as a set of graph metrics usable for electrical grid evaluation. The presented model and metrics show to be useful to store, in a single and simple model, valuable information for design, evaluation and operation of microgrid systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement Data Acquisition System in Laboratory for Renewable Energy Sources Enhancing Short-Circuit Level and Dynamic Reactive Power Exchange in GB Transmission Networks under Low Inertia Scenarios What time-period aggregation method works best for power system operation models with renewables and storage? Primary and Secondary Control in Lossy Inverter-Based Microgrids Analysis of Battery Energy Storage System Integration in a Combined Cycle Power Plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1