Hanieh Eshaghnia, M. Nosratollahi, Amirhossain Adami, Hadi Dastoury
{"title":"基于非涡轮泵推进系统的发射装置多学科优化概念设计","authors":"Hanieh Eshaghnia, M. Nosratollahi, Amirhossain Adami, Hadi Dastoury","doi":"10.30699/jsst.2022.1286","DOIUrl":null,"url":null,"abstract":"Turbopump propulsion systems have been used in almost all launch vehicles. With the advancement of manufacturing technologies, especially in the use of composite and lightweight structures, the use of non-turbopump propulsion systems has been considered due to the reduction of operating costs. This study has been investigated the multi-disciplinary optimization design of a two-stage launch vehicle using a pressure-fed propulsion system for both stages. Two main propulsion systems including gas-pressure and self-pressure feeding systems, have been evaluated in different configurations on two launcher stages. To extracting the optimum and possible solution, the launcher mission also has been added as a design variable in the optimization algorithm. The launcher has been extracted and introduced for each specific configuration of the launcher to achieve a certain orbital altitude with the maximum carrying payload and minimum gross mass. For this purpose, the AAO multidisciplinary optimization design framework has been used. The system-level and subsystem optimizer of the GA-SQP algorithm have been chosen.","PeriodicalId":272394,"journal":{"name":"Journal of Space Science and Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-disciplinary optimization conceptual design of the launcher based on non-turbopump propulsion systems\",\"authors\":\"Hanieh Eshaghnia, M. Nosratollahi, Amirhossain Adami, Hadi Dastoury\",\"doi\":\"10.30699/jsst.2022.1286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turbopump propulsion systems have been used in almost all launch vehicles. With the advancement of manufacturing technologies, especially in the use of composite and lightweight structures, the use of non-turbopump propulsion systems has been considered due to the reduction of operating costs. This study has been investigated the multi-disciplinary optimization design of a two-stage launch vehicle using a pressure-fed propulsion system for both stages. Two main propulsion systems including gas-pressure and self-pressure feeding systems, have been evaluated in different configurations on two launcher stages. To extracting the optimum and possible solution, the launcher mission also has been added as a design variable in the optimization algorithm. The launcher has been extracted and introduced for each specific configuration of the launcher to achieve a certain orbital altitude with the maximum carrying payload and minimum gross mass. For this purpose, the AAO multidisciplinary optimization design framework has been used. The system-level and subsystem optimizer of the GA-SQP algorithm have been chosen.\",\"PeriodicalId\":272394,\"journal\":{\"name\":\"Journal of Space Science and Technology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Space Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30699/jsst.2022.1286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30699/jsst.2022.1286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-disciplinary optimization conceptual design of the launcher based on non-turbopump propulsion systems
Turbopump propulsion systems have been used in almost all launch vehicles. With the advancement of manufacturing technologies, especially in the use of composite and lightweight structures, the use of non-turbopump propulsion systems has been considered due to the reduction of operating costs. This study has been investigated the multi-disciplinary optimization design of a two-stage launch vehicle using a pressure-fed propulsion system for both stages. Two main propulsion systems including gas-pressure and self-pressure feeding systems, have been evaluated in different configurations on two launcher stages. To extracting the optimum and possible solution, the launcher mission also has been added as a design variable in the optimization algorithm. The launcher has been extracted and introduced for each specific configuration of the launcher to achieve a certain orbital altitude with the maximum carrying payload and minimum gross mass. For this purpose, the AAO multidisciplinary optimization design framework has been used. The system-level and subsystem optimizer of the GA-SQP algorithm have been chosen.