基于嵌入神经元的内存结构中近似图像滤波的可调精度控制

Ayushi Dube, Ankit Wagle, G. Singh, S. Vrudhula
{"title":"基于嵌入神经元的内存结构中近似图像滤波的可调精度控制","authors":"Ayushi Dube, Ankit Wagle, G. Singh, S. Vrudhula","doi":"10.1145/3508352.3549385","DOIUrl":null,"url":null,"abstract":"This paper presents a novel hardware-software co-design consisting of a Processing in-Memory (PiM) architecture with embedded neural processing elements (NPE) that are highly reconfigurable. The PiM platform and proposed approximation strategies are employed for various image filtering applications while providing the user with fine-grain dynamic control over energy efficiency, precision, and throughput (EPT). The proposed co-design can change the Peak Signal to Noise Ratio (PSNR, output quality metric for image filtering applications) from 25dB to 50dB (acceptable PSNR range for image filtering applications) without incurring any extra cost in terms of energy or latency. While switching from accurate to approximate mode of computation in the proposed co-design, the maximum improvement in energy efficiency and throughput is 2X. However, the gains in energy efficiency against a MAC-based PE array with the proposed memory platform are 3X-6X. The corresponding improvements in throughput are 2.26X-4.52X, respectively.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Precision Control for Approximate Image Filtering in an In-Memory Architecture with Embedded Neurons\",\"authors\":\"Ayushi Dube, Ankit Wagle, G. Singh, S. Vrudhula\",\"doi\":\"10.1145/3508352.3549385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel hardware-software co-design consisting of a Processing in-Memory (PiM) architecture with embedded neural processing elements (NPE) that are highly reconfigurable. The PiM platform and proposed approximation strategies are employed for various image filtering applications while providing the user with fine-grain dynamic control over energy efficiency, precision, and throughput (EPT). The proposed co-design can change the Peak Signal to Noise Ratio (PSNR, output quality metric for image filtering applications) from 25dB to 50dB (acceptable PSNR range for image filtering applications) without incurring any extra cost in terms of energy or latency. While switching from accurate to approximate mode of computation in the proposed co-design, the maximum improvement in energy efficiency and throughput is 2X. However, the gains in energy efficiency against a MAC-based PE array with the proposed memory platform are 3X-6X. The corresponding improvements in throughput are 2.26X-4.52X, respectively.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的硬件-软件协同设计方案,该方案由内存处理(PiM)体系结构和高度可重构的嵌入式神经处理元件(NPE)组成。PiM平台及其提出的近似策略可用于各种图像滤波应用,同时为用户提供对能效、精度和吞吐量(EPT)的细粒度动态控制。所提出的协同设计可以将峰值信噪比(PSNR,图像滤波应用的输出质量指标)从25dB更改为50dB(图像滤波应用可接受的PSNR范围),而不会在能量或延迟方面产生任何额外成本。当在提出的协同设计中从精确计算模式切换到近似计算模式时,能源效率和吞吐量的最大改进是2倍。然而,与基于mac的PE阵列相比,该存储平台的能效提高了3X-6X。相应的吞吐量提升分别为2.26X-4.52X。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tunable Precision Control for Approximate Image Filtering in an In-Memory Architecture with Embedded Neurons
This paper presents a novel hardware-software co-design consisting of a Processing in-Memory (PiM) architecture with embedded neural processing elements (NPE) that are highly reconfigurable. The PiM platform and proposed approximation strategies are employed for various image filtering applications while providing the user with fine-grain dynamic control over energy efficiency, precision, and throughput (EPT). The proposed co-design can change the Peak Signal to Noise Ratio (PSNR, output quality metric for image filtering applications) from 25dB to 50dB (acceptable PSNR range for image filtering applications) without incurring any extra cost in terms of energy or latency. While switching from accurate to approximate mode of computation in the proposed co-design, the maximum improvement in energy efficiency and throughput is 2X. However, the gains in energy efficiency against a MAC-based PE array with the proposed memory platform are 3X-6X. The corresponding improvements in throughput are 2.26X-4.52X, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1