Yong Zhang, Qingdong Du, Shidong Yu, Jeng-Shyang Pan
{"title":"基于模糊演化卡尔曼滤波的RBF神经网络及其在矿山安全监测中的应用","authors":"Yong Zhang, Qingdong Du, Shidong Yu, Jeng-Shyang Pan","doi":"10.1109/HIS.2009.96","DOIUrl":null,"url":null,"abstract":"Fuzzy information fusion methods are adopted widely to resolve the complicated nonlinear problems in recent years. This paper proposes a fusion learning algorithm of radial basis function (RBF) neural network based on fuzzy evolution Kalman filtering. By using this proposed method, monitoring data are extracted and optimized in mine safety monitoring, and Matlab simulation results are analyzed. The results show that this method has feasibility and rapid learning efficiency, which can improve precision and reliability in mine monitoring systems.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RBF Neural Network Based on Fuzzy Evolution Kalman Filtering and Application in Mine Safety Monitoring\",\"authors\":\"Yong Zhang, Qingdong Du, Shidong Yu, Jeng-Shyang Pan\",\"doi\":\"10.1109/HIS.2009.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy information fusion methods are adopted widely to resolve the complicated nonlinear problems in recent years. This paper proposes a fusion learning algorithm of radial basis function (RBF) neural network based on fuzzy evolution Kalman filtering. By using this proposed method, monitoring data are extracted and optimized in mine safety monitoring, and Matlab simulation results are analyzed. The results show that this method has feasibility and rapid learning efficiency, which can improve precision and reliability in mine monitoring systems.\",\"PeriodicalId\":414085,\"journal\":{\"name\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2009.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RBF Neural Network Based on Fuzzy Evolution Kalman Filtering and Application in Mine Safety Monitoring
Fuzzy information fusion methods are adopted widely to resolve the complicated nonlinear problems in recent years. This paper proposes a fusion learning algorithm of radial basis function (RBF) neural network based on fuzzy evolution Kalman filtering. By using this proposed method, monitoring data are extracted and optimized in mine safety monitoring, and Matlab simulation results are analyzed. The results show that this method has feasibility and rapid learning efficiency, which can improve precision and reliability in mine monitoring systems.