Yangwen Zhang, W. Wulff, A. Bleicher, Laurenz Wernicke, T. Schauer, M. Engelmann
{"title":"可持续高层建筑的可移动立面元素","authors":"Yangwen Zhang, W. Wulff, A. Bleicher, Laurenz Wernicke, T. Schauer, M. Engelmann","doi":"10.2749/nanjing.2022.1046","DOIUrl":null,"url":null,"abstract":"This paper presents a sustainable semi-active distributed-Multiple Tuned Facade Damping (d-MTFD) system that utilizes the existing mass of the Double-Skin Facade's outer skin as damping mass to mitigate structural vibrations caused by wind excitation. Based on this concept, a prototype with one full-scale parallel moveable facade element has been developed, built, and validated. A stepper motor working together with its connected energy harvesting circuit is innovatively applied as an adjustable electrical damper and simultaneously as an energy harvester. Its feasibility has been proven through experiments using Hardware-in-the-Loop (HiL) simulations. An energy harvesting efficiency of 75% was achieved by using a two-stage power converter as the energy harvesting circuit. The self-sufficiency of the semi-active d-MTFD system was achieved.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moveable Facade Elements for Sustainable High-rise Buildings\",\"authors\":\"Yangwen Zhang, W. Wulff, A. Bleicher, Laurenz Wernicke, T. Schauer, M. Engelmann\",\"doi\":\"10.2749/nanjing.2022.1046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a sustainable semi-active distributed-Multiple Tuned Facade Damping (d-MTFD) system that utilizes the existing mass of the Double-Skin Facade's outer skin as damping mass to mitigate structural vibrations caused by wind excitation. Based on this concept, a prototype with one full-scale parallel moveable facade element has been developed, built, and validated. A stepper motor working together with its connected energy harvesting circuit is innovatively applied as an adjustable electrical damper and simultaneously as an energy harvester. Its feasibility has been proven through experiments using Hardware-in-the-Loop (HiL) simulations. An energy harvesting efficiency of 75% was achieved by using a two-stage power converter as the energy harvesting circuit. The self-sufficiency of the semi-active d-MTFD system was achieved.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.1046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.1046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Moveable Facade Elements for Sustainable High-rise Buildings
This paper presents a sustainable semi-active distributed-Multiple Tuned Facade Damping (d-MTFD) system that utilizes the existing mass of the Double-Skin Facade's outer skin as damping mass to mitigate structural vibrations caused by wind excitation. Based on this concept, a prototype with one full-scale parallel moveable facade element has been developed, built, and validated. A stepper motor working together with its connected energy harvesting circuit is innovatively applied as an adjustable electrical damper and simultaneously as an energy harvester. Its feasibility has been proven through experiments using Hardware-in-the-Loop (HiL) simulations. An energy harvesting efficiency of 75% was achieved by using a two-stage power converter as the energy harvesting circuit. The self-sufficiency of the semi-active d-MTFD system was achieved.