用于HPC I/O请求的服务器端工作负载标识

Lu Pang, K. Kant
{"title":"用于HPC I/O请求的服务器端工作负载标识","authors":"Lu Pang, K. Kant","doi":"10.1145/3526063.3535350","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a method to identify High Performance Computing (HPC) workloads from a stream of incoming I/O requests. This characterization of workloads could then be used to intelligently schedule the I/O requests in the parallel file system (PFS) that most HPC systems use. We use a deep learning model for this purpose that is designed to pick up changes in the workload as they occur. We show that our method accurately determines the workload characteristics when evaluated on publicly available server-side HPC traces. We also show that the I/O scheduling based on such a characterization can substantially increase the available I/O bandwidth and thus reduce the latencies for the HPC workloads.","PeriodicalId":244248,"journal":{"name":"Proceedings of the 2nd Workshop on Performance EngineeRing, Modelling, Analysis, and VisualizatiOn Strategy","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Server-Side Workload Identification for HPC I/O Requests\",\"authors\":\"Lu Pang, K. Kant\",\"doi\":\"10.1145/3526063.3535350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a method to identify High Performance Computing (HPC) workloads from a stream of incoming I/O requests. This characterization of workloads could then be used to intelligently schedule the I/O requests in the parallel file system (PFS) that most HPC systems use. We use a deep learning model for this purpose that is designed to pick up changes in the workload as they occur. We show that our method accurately determines the workload characteristics when evaluated on publicly available server-side HPC traces. We also show that the I/O scheduling based on such a characterization can substantially increase the available I/O bandwidth and thus reduce the latencies for the HPC workloads.\",\"PeriodicalId\":244248,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Performance EngineeRing, Modelling, Analysis, and VisualizatiOn Strategy\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Performance EngineeRing, Modelling, Analysis, and VisualizatiOn Strategy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526063.3535350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Performance EngineeRing, Modelling, Analysis, and VisualizatiOn Strategy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526063.3535350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们开发了一种从传入I/O请求流中识别高性能计算(HPC)工作负载的方法。然后,可以使用这种工作负载特征来智能地调度大多数HPC系统使用的并行文件系统(PFS)中的I/O请求。为此,我们使用深度学习模型,该模型旨在在工作负载发生变化时捕捉变化。我们表明,在对公开可用的服务器端HPC跟踪进行评估时,我们的方法准确地确定了工作负载特征。我们还表明,基于这种特性的I/O调度可以大大增加可用的I/O带宽,从而减少HPC工作负载的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Server-Side Workload Identification for HPC I/O Requests
In this paper, we develop a method to identify High Performance Computing (HPC) workloads from a stream of incoming I/O requests. This characterization of workloads could then be used to intelligently schedule the I/O requests in the parallel file system (PFS) that most HPC systems use. We use a deep learning model for this purpose that is designed to pick up changes in the workload as they occur. We show that our method accurately determines the workload characteristics when evaluated on publicly available server-side HPC traces. We also show that the I/O scheduling based on such a characterization can substantially increase the available I/O bandwidth and thus reduce the latencies for the HPC workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Evaluation Through Simulation with SimGrid PERMAVOST'22 Discussion Panel: Domain Scientists vs. Performance Analysis Tools: Advancing in HPC Integrating Visualization (and Visualization Experts) with Performance Analysis An Overhead Analysis of MPI Profiling and Tracing Tools Server-Side Workload Identification for HPC I/O Requests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1