多层前馈神经网络在智能天线系统自适应波束形成中的应用

A. Sallomi, Sulaiman Ahmed
{"title":"多层前馈神经网络在智能天线系统自适应波束形成中的应用","authors":"A. Sallomi, Sulaiman Ahmed","doi":"10.1109/AIC-MITCSA.2016.7759925","DOIUrl":null,"url":null,"abstract":"In this paper an artificial Feed Forward Neural Network (FFNN) is applied for smart antenna adaptive beamforming. The neural network is used to calculate the optimum weights of the uniform linear antenna array to steer the radiation pattern of the toward the desired users and make nulling in the direction of interference sources. Levenberg Marquardt (LM) algorithm and Resilient Backpropagation (Rprop) algorithm are used to train the FFNN. Five element uniform linear array is used with spacing between element equal to the half wavelength. The simulation results of FFNN training using LM and Rprop algorithms showed that the Neural Network (NN) trained by LM training algorithm gives better performance than Rprop training algorithm, since it considers the fastest backpropagation training algorithm but it takes more memory than other algorithms.","PeriodicalId":315179,"journal":{"name":"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multi-layer feed forward neural network application in adaptive beamforming of smart antenna system\",\"authors\":\"A. Sallomi, Sulaiman Ahmed\",\"doi\":\"10.1109/AIC-MITCSA.2016.7759925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an artificial Feed Forward Neural Network (FFNN) is applied for smart antenna adaptive beamforming. The neural network is used to calculate the optimum weights of the uniform linear antenna array to steer the radiation pattern of the toward the desired users and make nulling in the direction of interference sources. Levenberg Marquardt (LM) algorithm and Resilient Backpropagation (Rprop) algorithm are used to train the FFNN. Five element uniform linear array is used with spacing between element equal to the half wavelength. The simulation results of FFNN training using LM and Rprop algorithms showed that the Neural Network (NN) trained by LM training algorithm gives better performance than Rprop training algorithm, since it considers the fastest backpropagation training algorithm but it takes more memory than other algorithms.\",\"PeriodicalId\":315179,\"journal\":{\"name\":\"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIC-MITCSA.2016.7759925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIC-MITCSA.2016.7759925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文将人工前馈神经网络(FFNN)应用于智能天线自适应波束形成。利用神经网络计算均匀线性天线阵的最优权值,使天线阵的辐射方向图向期望的用户方向移动,并在干扰源方向进行消零。采用Levenberg Marquardt (LM)算法和弹性反向传播(Rprop)算法对FFNN进行训练。采用五元均匀线性阵列,单元间距为半波长。使用LM和Rprop算法训练FFNN的仿真结果表明,LM训练算法训练的神经网络比Rprop训练算法具有更好的性能,因为它考虑了最快的反向传播训练算法,但比其他算法占用更多的内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-layer feed forward neural network application in adaptive beamforming of smart antenna system
In this paper an artificial Feed Forward Neural Network (FFNN) is applied for smart antenna adaptive beamforming. The neural network is used to calculate the optimum weights of the uniform linear antenna array to steer the radiation pattern of the toward the desired users and make nulling in the direction of interference sources. Levenberg Marquardt (LM) algorithm and Resilient Backpropagation (Rprop) algorithm are used to train the FFNN. Five element uniform linear array is used with spacing between element equal to the half wavelength. The simulation results of FFNN training using LM and Rprop algorithms showed that the Neural Network (NN) trained by LM training algorithm gives better performance than Rprop training algorithm, since it considers the fastest backpropagation training algorithm but it takes more memory than other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Routing algorithm optimization for software defined network WAN Modeling, design and analysis of an induction heating coil for brazing process using FEM Feature extraction of brain event-related potentials using cubic spline technique Ontology based reasoning for solving passenger train optimization problem Checking the robustness of a PWM sliding mode controlled DC/DC buck-boost converter using its Matlab/Simulink model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1