利用探地雷达波速的空间和时移测量对水管泄漏的现场验证

Bella Wei-Yat Cheung, W. Lai
{"title":"利用探地雷达波速的空间和时移测量对水管泄漏的现场验证","authors":"Bella Wei-Yat Cheung, W. Lai","doi":"10.1109/ICGPR.2018.8441668","DOIUrl":null,"url":null,"abstract":"GPR has great potential in investigating water leak and water seepage because of its sensitivity to water. Given water as a dominant factor affecting reflection strength, wave propagation velocity of radar and absorption of high frequency part in spectral content for the non-metallic substance, thus this feature can be used to characterize water leak and seepage. This paper studies the phenomenon of subsurface water leak and demonstrates the experimental effort of pinpointing the water leaks of a buried water mains via a field-scale water leakage experiment in a designated site area (20m long × 10m wide) by analyzing change in GPR's wave propagation velocity. In the site, a ductile iron (D.I.) pipe with four displaced joints were buried and overlaid by concrete and paving blocks. Results obtained by IDS antenna with nominal center frequency of 600MHz were used to study and validate the effects of water leakage by velocity analysis based on [1]. The GPR wave propagation velocity analysis and imaging are based on the GPR data acquired before and after the water injection to map the location of leak points. With the reliable result attained from the velocity analysis, it is validated that the leak points of the pipe could be identified and verified by comparing the velocity profile and providing an accurate method for engineers to locate pipe leak.","PeriodicalId":269482,"journal":{"name":"2018 17th International Conference on Ground Penetrating Radar (GPR)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Field Validation of Water Pipe Leak by Spatial and Time-lapsed Measurement of GPR Wave Velocity\",\"authors\":\"Bella Wei-Yat Cheung, W. Lai\",\"doi\":\"10.1109/ICGPR.2018.8441668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPR has great potential in investigating water leak and water seepage because of its sensitivity to water. Given water as a dominant factor affecting reflection strength, wave propagation velocity of radar and absorption of high frequency part in spectral content for the non-metallic substance, thus this feature can be used to characterize water leak and seepage. This paper studies the phenomenon of subsurface water leak and demonstrates the experimental effort of pinpointing the water leaks of a buried water mains via a field-scale water leakage experiment in a designated site area (20m long × 10m wide) by analyzing change in GPR's wave propagation velocity. In the site, a ductile iron (D.I.) pipe with four displaced joints were buried and overlaid by concrete and paving blocks. Results obtained by IDS antenna with nominal center frequency of 600MHz were used to study and validate the effects of water leakage by velocity analysis based on [1]. The GPR wave propagation velocity analysis and imaging are based on the GPR data acquired before and after the water injection to map the location of leak points. With the reliable result attained from the velocity analysis, it is validated that the leak points of the pipe could be identified and verified by comparing the velocity profile and providing an accurate method for engineers to locate pipe leak.\",\"PeriodicalId\":269482,\"journal\":{\"name\":\"2018 17th International Conference on Ground Penetrating Radar (GPR)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th International Conference on Ground Penetrating Radar (GPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2018.8441668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2018.8441668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

探地雷达对水的敏感性使其在探测漏水和渗水方面具有很大的潜力。鉴于水是影响非金属物质的反射强度、雷达波传播速度和光谱含量中高频部分吸收的主导因素,因此可以利用这一特征来表征漏水和渗水。本文对地下漏水现象进行了研究,并通过分析探地雷达波传播速度的变化,在指定的场地区域(长×宽20m)进行了现场尺度的漏水实验,展示了精确定位地下水管漏水的实验成果。在现场,一个有四个位移接头的球墨铸铁(D.I.)管被埋起来,并被混凝土和铺路砖覆盖。利用标称中心频率为600MHz的IDS天线所获得的结果,基于[1],通过速度分析来研究和验证漏水的影响。探地雷达波传播速度分析和成像是根据注水前后的探地雷达数据绘制泄漏点位置。速度分析得到了可靠的结果,验证了通过速度剖面的对比可以识别和验证管道的泄漏点,为工程师定位管道泄漏提供了准确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Field Validation of Water Pipe Leak by Spatial and Time-lapsed Measurement of GPR Wave Velocity
GPR has great potential in investigating water leak and water seepage because of its sensitivity to water. Given water as a dominant factor affecting reflection strength, wave propagation velocity of radar and absorption of high frequency part in spectral content for the non-metallic substance, thus this feature can be used to characterize water leak and seepage. This paper studies the phenomenon of subsurface water leak and demonstrates the experimental effort of pinpointing the water leaks of a buried water mains via a field-scale water leakage experiment in a designated site area (20m long × 10m wide) by analyzing change in GPR's wave propagation velocity. In the site, a ductile iron (D.I.) pipe with four displaced joints were buried and overlaid by concrete and paving blocks. Results obtained by IDS antenna with nominal center frequency of 600MHz were used to study and validate the effects of water leakage by velocity analysis based on [1]. The GPR wave propagation velocity analysis and imaging are based on the GPR data acquired before and after the water injection to map the location of leak points. With the reliable result attained from the velocity analysis, it is validated that the leak points of the pipe could be identified and verified by comparing the velocity profile and providing an accurate method for engineers to locate pipe leak.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high-stability dual-chip GPR for cooperative target probing Ice volume estimates of Swiss glaciers using helicopter-borne GPR — an example from the Glacier de la Plaine Morte Detection of Top Coal by Conductively-Guided Borehole Radar Waves: Results from Numerical Modelling Investigating karst cave sediments of unroofed caves with GPR, XRF and XRD Comparison of GPR and Capacitance Probe laboratory experiments in sandy soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1