基于MRMHC-SVM算法的网络异常检测

Wenfa Li, Miyi Duan, You Chen
{"title":"基于MRMHC-SVM算法的网络异常检测","authors":"Wenfa Li, Miyi Duan, You Chen","doi":"10.1109/INMIC.2008.4777754","DOIUrl":null,"url":null,"abstract":"Network anomaly detection is the major direction of research in intrusion detection. Aiming at some problems, which include high false alarm rate, difficulties in obtaining exactly clean data for the modeling of normal patterns and the deterioration of detection rate because of some ldquonoisyrdquo data(unclean data) in the training set, in current intrusion detection techniques, we propose a novel network anomaly detection method based on MRMHC-SVM machine learning algorithm. The experimental results show that our method can effectively detect anomalies with high true positive rate and low false positive rate than the state-of-the-art anomaly detection methods. Moreover, the proposed method retains good detection performance after employing feature selection aiming at avoiding the ldquocurse of dimensionalityrdquo. In addition, even interfered by ldquonoisyrdquo data, it is robust and effective.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Network anomaly detection based on MRMHC-SVM algorithm\",\"authors\":\"Wenfa Li, Miyi Duan, You Chen\",\"doi\":\"10.1109/INMIC.2008.4777754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network anomaly detection is the major direction of research in intrusion detection. Aiming at some problems, which include high false alarm rate, difficulties in obtaining exactly clean data for the modeling of normal patterns and the deterioration of detection rate because of some ldquonoisyrdquo data(unclean data) in the training set, in current intrusion detection techniques, we propose a novel network anomaly detection method based on MRMHC-SVM machine learning algorithm. The experimental results show that our method can effectively detect anomalies with high true positive rate and low false positive rate than the state-of-the-art anomaly detection methods. Moreover, the proposed method retains good detection performance after employing feature selection aiming at avoiding the ldquocurse of dimensionalityrdquo. In addition, even interfered by ldquonoisyrdquo data, it is robust and effective.\",\"PeriodicalId\":112530,\"journal\":{\"name\":\"2008 IEEE International Multitopic Conference\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Multitopic Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMIC.2008.4777754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

网络异常检测是入侵检测研究的主要方向。针对当前入侵检测技术中存在的虚警率高、正常模式建模难以获得准确干净数据以及训练集中存在不干净数据导致检测率下降等问题,提出了一种基于MRMHC-SVM机器学习算法的网络异常检测方法。实验结果表明,与现有的异常检测方法相比,该方法可以有效地检测出高真阳性率和低假阳性率的异常。此外,该方法在采用特征选择的基础上,避免了维数变化带来的缺陷,保持了良好的检测性能。此外,即使受到低噪声数据的干扰,该方法也具有良好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network anomaly detection based on MRMHC-SVM algorithm
Network anomaly detection is the major direction of research in intrusion detection. Aiming at some problems, which include high false alarm rate, difficulties in obtaining exactly clean data for the modeling of normal patterns and the deterioration of detection rate because of some ldquonoisyrdquo data(unclean data) in the training set, in current intrusion detection techniques, we propose a novel network anomaly detection method based on MRMHC-SVM machine learning algorithm. The experimental results show that our method can effectively detect anomalies with high true positive rate and low false positive rate than the state-of-the-art anomaly detection methods. Moreover, the proposed method retains good detection performance after employing feature selection aiming at avoiding the ldquocurse of dimensionalityrdquo. In addition, even interfered by ldquonoisyrdquo data, it is robust and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of nano particles on semiconductor manufacturing Graphical modeling and optimization of air interface standards for Software Defined Radios Per Packet Authentication for IEEE 802.11 wireless LAN An intelligent agri-information dissemination framework: An e-Government Characterization of waveguide slots using full wave EM analysis software HFSS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1