{"title":"unit @ DANKMEME:结合卷积模型和基于变压器的架构,实现准确的MEME管理","authors":"Claudia Breazzano, E. Rubino, D. Croce, R. Basili","doi":"10.4000/BOOKS.AACCADEMIA.7420","DOIUrl":null,"url":null,"abstract":"This paper describes the UNITOR system that participated to the “multimoDal Artefacts recogNition Knowledge for MEMES” (DANKMEMES) task within the context of EVALITA 2020. UNITOR implements a neural model which combines a Deep Convolutional Neural Network to encode visual information of input images and a Transformerbased architecture to encode the meaning of the attached texts. UNITOR ranked first in all subtasks, clearly confirming the robustness of the investigated neural architectures and suggesting the beneficial impact of the proposed combination strategy.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UNITOR @ DANKMEME: Combining Convolutional Models and Transformer-based architectures for accurate MEME management\",\"authors\":\"Claudia Breazzano, E. Rubino, D. Croce, R. Basili\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.7420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the UNITOR system that participated to the “multimoDal Artefacts recogNition Knowledge for MEMES” (DANKMEMES) task within the context of EVALITA 2020. UNITOR implements a neural model which combines a Deep Convolutional Neural Network to encode visual information of input images and a Transformerbased architecture to encode the meaning of the attached texts. UNITOR ranked first in all subtasks, clearly confirming the robustness of the investigated neural architectures and suggesting the beneficial impact of the proposed combination strategy.\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.7420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UNITOR @ DANKMEME: Combining Convolutional Models and Transformer-based architectures for accurate MEME management
This paper describes the UNITOR system that participated to the “multimoDal Artefacts recogNition Knowledge for MEMES” (DANKMEMES) task within the context of EVALITA 2020. UNITOR implements a neural model which combines a Deep Convolutional Neural Network to encode visual information of input images and a Transformerbased architecture to encode the meaning of the attached texts. UNITOR ranked first in all subtasks, clearly confirming the robustness of the investigated neural architectures and suggesting the beneficial impact of the proposed combination strategy.