基于特征空间信息的模糊区域不相似度量

S. Makrogiannis, G. Economou, S. Fotopoulos
{"title":"基于特征空间信息的模糊区域不相似度量","authors":"S. Makrogiannis, G. Economou, S. Fotopoulos","doi":"10.1109/ICDSP.2002.1028282","DOIUrl":null,"url":null,"abstract":"An inter-region color dissimilarity measure is proposed that utilizes the basic principles of region based segmentation and fuzzy clustering techniques. This method operates on the features associated to the initial image partitioning produced by watershed analysis. The subtractive clustering algorithm is employed to estimate the number of clusters and the fuzzy c-means classification method follows. The membership values assigned to each region along with a fuzzy (dis)similarity measure are used to estimate the cost between the regions. The process is completed using the shortest spanning tree merging algorithm. The proposed method is also compared to other related approaches.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fuzzy region dissimilarity measure using feature space information\",\"authors\":\"S. Makrogiannis, G. Economou, S. Fotopoulos\",\"doi\":\"10.1109/ICDSP.2002.1028282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An inter-region color dissimilarity measure is proposed that utilizes the basic principles of region based segmentation and fuzzy clustering techniques. This method operates on the features associated to the initial image partitioning produced by watershed analysis. The subtractive clustering algorithm is employed to estimate the number of clusters and the fuzzy c-means classification method follows. The membership values assigned to each region along with a fuzzy (dis)similarity measure are used to estimate the cost between the regions. The process is completed using the shortest spanning tree merging algorithm. The proposed method is also compared to other related approaches.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用区域分割和模糊聚类技术的基本原理,提出了一种区域间颜色不相似度度量方法。该方法对分水岭分析产生的初始图像分区相关的特征进行操作。采用减法聚类算法估计聚类数量,采用模糊c均值分类方法。分配给每个区域的隶属度值以及模糊(非)相似性度量用于估计区域之间的成本。该过程采用最短生成树归并算法完成。并与其他相关方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fuzzy region dissimilarity measure using feature space information
An inter-region color dissimilarity measure is proposed that utilizes the basic principles of region based segmentation and fuzzy clustering techniques. This method operates on the features associated to the initial image partitioning produced by watershed analysis. The subtractive clustering algorithm is employed to estimate the number of clusters and the fuzzy c-means classification method follows. The membership values assigned to each region along with a fuzzy (dis)similarity measure are used to estimate the cost between the regions. The process is completed using the shortest spanning tree merging algorithm. The proposed method is also compared to other related approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
H/sub /spl infin// bounded optimal updating - down-dating algorithm A systematic approach to seizure prediction using genetic and classifier based feature selection A prognostic-classification system based on a probabilistic NN for predicting urine bladder cancer recurrence Implementation of real-time AMDF pitch-detection for voice gender normalisation Fourier filtering of continuous global surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1