{"title":"温暖、潮湿和嘈杂的大脑中的量子意识","authors":"V. Sbitnev","doi":"10.1142/S0217984916503292","DOIUrl":null,"url":null,"abstract":"The emergence of quantum consciousness stems from dynamic flows of hydrogen ions in brain liquid. This liquid contains vast areas of the fourth phase of water with hexagonal packing of its molecules, the so-called exclusion zone (EZ) of water. The hydrogen ion motion on such hexagonal lattices shows as the hopping of the ions forward and the holes (vacant places) backward, caused by the Grotthuss mechanism. By supporting this motion using external infrasound sources, one may achieve the appearance of the superfluid state of the EZ water. Flows of the hydrogen ions are described by the modified Navier-Stokes equation. It, along with the continuity equation, yields the nonlinear Schrodinger equation, which describes the quantum effects of these flows, such as the tunneling at long distances or the interference on gap junctions.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Quantum consciousness in warm, wet, and noisy brain\",\"authors\":\"V. Sbitnev\",\"doi\":\"10.1142/S0217984916503292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of quantum consciousness stems from dynamic flows of hydrogen ions in brain liquid. This liquid contains vast areas of the fourth phase of water with hexagonal packing of its molecules, the so-called exclusion zone (EZ) of water. The hydrogen ion motion on such hexagonal lattices shows as the hopping of the ions forward and the holes (vacant places) backward, caused by the Grotthuss mechanism. By supporting this motion using external infrasound sources, one may achieve the appearance of the superfluid state of the EZ water. Flows of the hydrogen ions are described by the modified Navier-Stokes equation. It, along with the continuity equation, yields the nonlinear Schrodinger equation, which describes the quantum effects of these flows, such as the tunneling at long distances or the interference on gap junctions.\",\"PeriodicalId\":298664,\"journal\":{\"name\":\"arXiv: Neurons and Cognition\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217984916503292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217984916503292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum consciousness in warm, wet, and noisy brain
The emergence of quantum consciousness stems from dynamic flows of hydrogen ions in brain liquid. This liquid contains vast areas of the fourth phase of water with hexagonal packing of its molecules, the so-called exclusion zone (EZ) of water. The hydrogen ion motion on such hexagonal lattices shows as the hopping of the ions forward and the holes (vacant places) backward, caused by the Grotthuss mechanism. By supporting this motion using external infrasound sources, one may achieve the appearance of the superfluid state of the EZ water. Flows of the hydrogen ions are described by the modified Navier-Stokes equation. It, along with the continuity equation, yields the nonlinear Schrodinger equation, which describes the quantum effects of these flows, such as the tunneling at long distances or the interference on gap junctions.