利用Kinect传感器进行关节和身体特征表征的人体日常活动识别

A. Jalal, Yeonho Kim, S. Kamal, Adnan Farooq, Daijin Kim
{"title":"利用Kinect传感器进行关节和身体特征表征的人体日常活动识别","authors":"A. Jalal, Yeonho Kim, S. Kamal, Adnan Farooq, Daijin Kim","doi":"10.1109/ICIEV.2015.7334030","DOIUrl":null,"url":null,"abstract":"Human activity recognition has been studied actively from decades using a sequence of 2D images/video. With the development of depth sensors, new opportunities arise to improve and advance this field. This study presents a depth imaging activity recognition system to monitor and recognize daily activities of the human without attaching optical markers or motion sensors. In this paper, we proposed a new feature representation and extraction method using a sequence of depth silhouettes. Particularly, we first extract the depth silhouette by removing background from noisy effects and then extract the joints plus body features as skin color detection from joint information and multi-view body shape from depth silhouettes (i.e., front and side views). We combine the joints plus body shape features to make feature vector. These features have two nice properties including invariant with respect to body shape or size and insensitive to small noise. Self-Organized Map (SOM) is then used to train and test the feature vectors. Experimental results regarding our proposed human activity dataset and publically available dataset demonstrate that our feature extraction method is more promising and outperforms the state-of-the-art feature extraction methods.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Human daily activity recognition with joints plus body features representation using Kinect sensor\",\"authors\":\"A. Jalal, Yeonho Kim, S. Kamal, Adnan Farooq, Daijin Kim\",\"doi\":\"10.1109/ICIEV.2015.7334030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity recognition has been studied actively from decades using a sequence of 2D images/video. With the development of depth sensors, new opportunities arise to improve and advance this field. This study presents a depth imaging activity recognition system to monitor and recognize daily activities of the human without attaching optical markers or motion sensors. In this paper, we proposed a new feature representation and extraction method using a sequence of depth silhouettes. Particularly, we first extract the depth silhouette by removing background from noisy effects and then extract the joints plus body features as skin color detection from joint information and multi-view body shape from depth silhouettes (i.e., front and side views). We combine the joints plus body shape features to make feature vector. These features have two nice properties including invariant with respect to body shape or size and insensitive to small noise. Self-Organized Map (SOM) is then used to train and test the feature vectors. Experimental results regarding our proposed human activity dataset and publically available dataset demonstrate that our feature extraction method is more promising and outperforms the state-of-the-art feature extraction methods.\",\"PeriodicalId\":367355,\"journal\":{\"name\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEV.2015.7334030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

几十年来,人们一直在利用一系列2D图像/视频积极研究人类活动识别。随着深度传感器的发展,为改进和推进这一领域带来了新的机遇。本研究提出了一种无需附加光学标记或运动传感器即可监测和识别人类日常活动的深度成像活动识别系统。本文提出了一种基于深度轮廓序列的特征表示与提取方法。特别是,我们首先通过去除噪声影响中的背景提取深度轮廓,然后从关节信息中提取关节加身体特征作为皮肤颜色检测,从深度轮廓(即正面和侧面视图)中提取多视图身体形状。我们将关节和身体形状特征组合成特征向量。这些特征有两个很好的特性,包括身体形状或大小的不变性和对小噪声不敏感。然后使用自组织映射(SOM)来训练和测试特征向量。针对我们提出的人类活动数据集和公开可用数据集的实验结果表明,我们的特征提取方法更有前途,并且优于最先进的特征提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human daily activity recognition with joints plus body features representation using Kinect sensor
Human activity recognition has been studied actively from decades using a sequence of 2D images/video. With the development of depth sensors, new opportunities arise to improve and advance this field. This study presents a depth imaging activity recognition system to monitor and recognize daily activities of the human without attaching optical markers or motion sensors. In this paper, we proposed a new feature representation and extraction method using a sequence of depth silhouettes. Particularly, we first extract the depth silhouette by removing background from noisy effects and then extract the joints plus body features as skin color detection from joint information and multi-view body shape from depth silhouettes (i.e., front and side views). We combine the joints plus body shape features to make feature vector. These features have two nice properties including invariant with respect to body shape or size and insensitive to small noise. Self-Organized Map (SOM) is then used to train and test the feature vectors. Experimental results regarding our proposed human activity dataset and publically available dataset demonstrate that our feature extraction method is more promising and outperforms the state-of-the-art feature extraction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Static output feedback control design for Takagi-Sugeno descriptor fuzzy systems FRIT based PI tuning for speed control of PMSM using FPGA for high frequency SiC MOSFET inverter A homogeneous region based methodology for text extraction from natural scene images People re-identification using 3D descriptor with skeleton information Development of battery-shaped device unified communication line and power line
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1