Tong Jia, Ying Li, Chengbo Zhang, Wensheng Xia, Jie Jiang, Yuhong Liu
{"title":"机器需要更好的日志记录:一种用于自动故障诊断的日志增强方法","authors":"Tong Jia, Ying Li, Chengbo Zhang, Wensheng Xia, Jie Jiang, Yuhong Liu","doi":"10.1109/ISSREW.2018.00-22","DOIUrl":null,"url":null,"abstract":"When systems fail, log data is often the most important information source for fault diagnosis. However, the performance of automatic fault diagnosis is limited by the ad-hoc nature of logs. The key problem is that existing developer-written logs are designed for humans rather than machines to automatically detect system anomalies. To improve the quality of logs for fault diagnosis, we propose a novel log enhancement approach which automatically identifies logging points that reflect anomalous behavior during system fault. We evaluate our approach on three popular software systems AcmeAir, HDFS and TensorFlow. Results show that it can significantly improve fault diagnosis accuracy by 50% on average compared to the developers' manually placed logging points.","PeriodicalId":321448,"journal":{"name":"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine Deserves Better Logging: A Log Enhancement Approach for Automatic Fault Diagnosis\",\"authors\":\"Tong Jia, Ying Li, Chengbo Zhang, Wensheng Xia, Jie Jiang, Yuhong Liu\",\"doi\":\"10.1109/ISSREW.2018.00-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When systems fail, log data is often the most important information source for fault diagnosis. However, the performance of automatic fault diagnosis is limited by the ad-hoc nature of logs. The key problem is that existing developer-written logs are designed for humans rather than machines to automatically detect system anomalies. To improve the quality of logs for fault diagnosis, we propose a novel log enhancement approach which automatically identifies logging points that reflect anomalous behavior during system fault. We evaluate our approach on three popular software systems AcmeAir, HDFS and TensorFlow. Results show that it can significantly improve fault diagnosis accuracy by 50% on average compared to the developers' manually placed logging points.\",\"PeriodicalId\":321448,\"journal\":{\"name\":\"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW.2018.00-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2018.00-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Deserves Better Logging: A Log Enhancement Approach for Automatic Fault Diagnosis
When systems fail, log data is often the most important information source for fault diagnosis. However, the performance of automatic fault diagnosis is limited by the ad-hoc nature of logs. The key problem is that existing developer-written logs are designed for humans rather than machines to automatically detect system anomalies. To improve the quality of logs for fault diagnosis, we propose a novel log enhancement approach which automatically identifies logging points that reflect anomalous behavior during system fault. We evaluate our approach on three popular software systems AcmeAir, HDFS and TensorFlow. Results show that it can significantly improve fault diagnosis accuracy by 50% on average compared to the developers' manually placed logging points.