S. Abubakar, N. I. Akinwande, S. Abdulrahman, F. Oguntolu
{"title":"麻疹疾病动力学数学模型的分岔分析","authors":"S. Abubakar, N. I. Akinwande, S. Abdulrahman, F. Oguntolu","doi":"10.13189/UJAM.2013.010402","DOIUrl":null,"url":null,"abstract":"In this paper we proposed a Mathematical model of Measles disease dynamics. The Disease Free Equilibrium (DFE) state, Endemic Equilibrium (EE) states and the characteristic equation of the model were obtained. The condition for the stability of the Disease Free equilibrium state was obtained. We analyze the bifurcation of the Disease Free Equilibrium (DFE) and the result of the analysis was presented in a tabular form.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bifurcation Analysis on the Mathematical Model of Measles Disease Dynamics\",\"authors\":\"S. Abubakar, N. I. Akinwande, S. Abdulrahman, F. Oguntolu\",\"doi\":\"10.13189/UJAM.2013.010402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we proposed a Mathematical model of Measles disease dynamics. The Disease Free Equilibrium (DFE) state, Endemic Equilibrium (EE) states and the characteristic equation of the model were obtained. The condition for the stability of the Disease Free equilibrium state was obtained. We analyze the bifurcation of the Disease Free Equilibrium (DFE) and the result of the analysis was presented in a tabular form.\",\"PeriodicalId\":372283,\"journal\":{\"name\":\"Universal Journal of Applied Mathematics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJAM.2013.010402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJAM.2013.010402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bifurcation Analysis on the Mathematical Model of Measles Disease Dynamics
In this paper we proposed a Mathematical model of Measles disease dynamics. The Disease Free Equilibrium (DFE) state, Endemic Equilibrium (EE) states and the characteristic equation of the model were obtained. The condition for the stability of the Disease Free equilibrium state was obtained. We analyze the bifurcation of the Disease Free Equilibrium (DFE) and the result of the analysis was presented in a tabular form.