SimpleNER GEM 2021句子简化系统

KV Aditya Srivatsa, Monil Gokani, Manish Shrivastava
{"title":"SimpleNER GEM 2021句子简化系统","authors":"KV Aditya Srivatsa, Monil Gokani, Manish Shrivastava","doi":"10.18653/v1/2021.gem-1.14","DOIUrl":null,"url":null,"abstract":"This paper describes SimpleNER, a model developed for the sentence simplification task at GEM-2021. Our system is a monolingual Seq2Seq Transformer architecture that uses control tokens pre-pended to the data, allowing the model to shape the generated simplifications according to user desired attributes. Additionally, we show that NER-tagging the training data before use helps stabilize the effect of the control tokens and significantly improves the overall performance of the system. We also employ pretrained embeddings to reduce data sparsity and allow the model to produce more generalizable outputs.","PeriodicalId":431658,"journal":{"name":"Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SimpleNER Sentence Simplification System for GEM 2021\",\"authors\":\"KV Aditya Srivatsa, Monil Gokani, Manish Shrivastava\",\"doi\":\"10.18653/v1/2021.gem-1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes SimpleNER, a model developed for the sentence simplification task at GEM-2021. Our system is a monolingual Seq2Seq Transformer architecture that uses control tokens pre-pended to the data, allowing the model to shape the generated simplifications according to user desired attributes. Additionally, we show that NER-tagging the training data before use helps stabilize the effect of the control tokens and significantly improves the overall performance of the system. We also employ pretrained embeddings to reduce data sparsity and allow the model to produce more generalizable outputs.\",\"PeriodicalId\":431658,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.gem-1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.gem-1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了SimpleNER,这是一个为GEM-2021的句子简化任务开发的模型。我们的系统是单语言Seq2Seq Transformer体系结构,它使用预先挂起到数据的控制令牌,允许模型根据用户所需的属性塑造生成的简化。此外,我们表明,在使用前对训练数据进行自定义标记有助于稳定控制令牌的效果,并显着提高系统的整体性能。我们还使用预训练的嵌入来降低数据稀疏性,并允许模型产生更一般化的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SimpleNER Sentence Simplification System for GEM 2021
This paper describes SimpleNER, a model developed for the sentence simplification task at GEM-2021. Our system is a monolingual Seq2Seq Transformer architecture that uses control tokens pre-pended to the data, allowing the model to shape the generated simplifications according to user desired attributes. Additionally, we show that NER-tagging the training data before use helps stabilize the effect of the control tokens and significantly improves the overall performance of the system. We also employ pretrained embeddings to reduce data sparsity and allow the model to produce more generalizable outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NUIG-DSI’s submission to The GEM Benchmark 2021 Human Perception in Natural Language Generation SimpleNER Sentence Simplification System for GEM 2021 System Description for the CommonGen task with the POINTER model Semantic Similarity Based Evaluation for Abstractive News Summarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1