{"title":"OpenMP到CUDA图形:一个基于编译器的转换,以增强NVIDIA设备的可编程性","authors":"Chen Yu, Sara Royuela, E. Quiñones","doi":"10.1145/3378678.3391881","DOIUrl":null,"url":null,"abstract":"Heterogeneous computing is increasingly being used in a diversity of computing systems, ranging from HPC to the real-time embedded domain, to cope with the performance requirements. Due to the variety of accelerators, e.g., FPGAs, GPUs, the use of high-level parallel programming models is desirable to exploit the performance capabilities of them, while maintaining an adequate productivity level. In that regard, OpenMP is a well-known high-level programming model that incorporates powerful task and accelerator models capable of efficiently exploiting structured and unstructured parallelism in heterogeneous computing. This paper presents a novel compiler transformation technique that automatically transforms OpenMP code into CUDA graphs, combining the benefits of programmability of a high-level programming model such as OpenMP, with the performance benefits of a low-level programming model such as CUDA. Evaluations have been performed on two NVIDIA GPUs from the HPC and embedded domains, i.e., the V100 and the Jetson AGX respectively.","PeriodicalId":383191,"journal":{"name":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"OpenMP to CUDA graphs: a compiler-based transformation to enhance the programmability of NVIDIA devices\",\"authors\":\"Chen Yu, Sara Royuela, E. Quiñones\",\"doi\":\"10.1145/3378678.3391881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous computing is increasingly being used in a diversity of computing systems, ranging from HPC to the real-time embedded domain, to cope with the performance requirements. Due to the variety of accelerators, e.g., FPGAs, GPUs, the use of high-level parallel programming models is desirable to exploit the performance capabilities of them, while maintaining an adequate productivity level. In that regard, OpenMP is a well-known high-level programming model that incorporates powerful task and accelerator models capable of efficiently exploiting structured and unstructured parallelism in heterogeneous computing. This paper presents a novel compiler transformation technique that automatically transforms OpenMP code into CUDA graphs, combining the benefits of programmability of a high-level programming model such as OpenMP, with the performance benefits of a low-level programming model such as CUDA. Evaluations have been performed on two NVIDIA GPUs from the HPC and embedded domains, i.e., the V100 and the Jetson AGX respectively.\",\"PeriodicalId\":383191,\"journal\":{\"name\":\"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3378678.3391881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378678.3391881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OpenMP to CUDA graphs: a compiler-based transformation to enhance the programmability of NVIDIA devices
Heterogeneous computing is increasingly being used in a diversity of computing systems, ranging from HPC to the real-time embedded domain, to cope with the performance requirements. Due to the variety of accelerators, e.g., FPGAs, GPUs, the use of high-level parallel programming models is desirable to exploit the performance capabilities of them, while maintaining an adequate productivity level. In that regard, OpenMP is a well-known high-level programming model that incorporates powerful task and accelerator models capable of efficiently exploiting structured and unstructured parallelism in heterogeneous computing. This paper presents a novel compiler transformation technique that automatically transforms OpenMP code into CUDA graphs, combining the benefits of programmability of a high-level programming model such as OpenMP, with the performance benefits of a low-level programming model such as CUDA. Evaluations have been performed on two NVIDIA GPUs from the HPC and embedded domains, i.e., the V100 and the Jetson AGX respectively.