Biswanath Dekaraja, L. Saikia, Satish Kumar Ramoji
{"title":"基于级联控制器的多能量互联电力系统ALFC-AVR联合控制","authors":"Biswanath Dekaraja, L. Saikia, Satish Kumar Ramoji","doi":"10.1109/ICICCSP53532.2022.9862433","DOIUrl":null,"url":null,"abstract":"This article presents a novel fractional-order (FO) cascade controller named FO tilt-derivative with filter cascaded to FO proportional-derivative with filter (CFOTDN-FOPDN) controller for unified automatic load frequency control study considering automatic voltage regulator loop. The considered system includes hydro and dish-Stirling solar thermal system in area-1 and area-2 consists of thermal and solar thermal power plant. Pertinent physical constraints are provided to the thermal and hydro units. The communication time delay (CTD) among load dispatch center and location of the power generation unit is considered. The optimization method named artificial flora algorithm is utilized to accomplish superlative solution. Investigations reveal that the proposed controller outperforms the PIDN and TIDN controllers. Analysis reflects that the higher value of CTD degrades the system performance. Moreover, the system performance improves with the higher value of the solar insolation. Lastly, the sensitivity analysis divulges the AFA optimized controller parameters are more robust against wide variations of system loading.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined ALFC-AVR Control of Diverse Energy Source Based Interconnected Power System using Cascade Controller\",\"authors\":\"Biswanath Dekaraja, L. Saikia, Satish Kumar Ramoji\",\"doi\":\"10.1109/ICICCSP53532.2022.9862433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel fractional-order (FO) cascade controller named FO tilt-derivative with filter cascaded to FO proportional-derivative with filter (CFOTDN-FOPDN) controller for unified automatic load frequency control study considering automatic voltage regulator loop. The considered system includes hydro and dish-Stirling solar thermal system in area-1 and area-2 consists of thermal and solar thermal power plant. Pertinent physical constraints are provided to the thermal and hydro units. The communication time delay (CTD) among load dispatch center and location of the power generation unit is considered. The optimization method named artificial flora algorithm is utilized to accomplish superlative solution. Investigations reveal that the proposed controller outperforms the PIDN and TIDN controllers. Analysis reflects that the higher value of CTD degrades the system performance. Moreover, the system performance improves with the higher value of the solar insolation. Lastly, the sensitivity analysis divulges the AFA optimized controller parameters are more robust against wide variations of system loading.\",\"PeriodicalId\":326163,\"journal\":{\"name\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCSP53532.2022.9862433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combined ALFC-AVR Control of Diverse Energy Source Based Interconnected Power System using Cascade Controller
This article presents a novel fractional-order (FO) cascade controller named FO tilt-derivative with filter cascaded to FO proportional-derivative with filter (CFOTDN-FOPDN) controller for unified automatic load frequency control study considering automatic voltage regulator loop. The considered system includes hydro and dish-Stirling solar thermal system in area-1 and area-2 consists of thermal and solar thermal power plant. Pertinent physical constraints are provided to the thermal and hydro units. The communication time delay (CTD) among load dispatch center and location of the power generation unit is considered. The optimization method named artificial flora algorithm is utilized to accomplish superlative solution. Investigations reveal that the proposed controller outperforms the PIDN and TIDN controllers. Analysis reflects that the higher value of CTD degrades the system performance. Moreover, the system performance improves with the higher value of the solar insolation. Lastly, the sensitivity analysis divulges the AFA optimized controller parameters are more robust against wide variations of system loading.