提高机器人环境的可识别性

G. Borghi, E. Pagello, M. Vianello
{"title":"提高机器人环境的可识别性","authors":"G. Borghi, E. Pagello, M. Vianello","doi":"10.1109/EURBOT.1997.633583","DOIUrl":null,"url":null,"abstract":"We consider the problem of state recognizability in robotics environments modeled by partially observable Markov decision processes. To make the model of robot-environment interaction more reliable, in the usual state transition table, we add to the state transition probabilities an additional continuous metric via the mean and the variance of some significant sensor measurements suitable to be kept under a continuous form, such as odometric measurements. These information allow one to greatly enhance the state recognizability. Our approach is general, and can be applied to any robotics application that requires compensation of the uncertainties due to sensor errors and to the randomness of robot action effects on its environment. We have devised some possible applications to modeling the interaction between a manipulator and its world, but in this paper, only a specific application to the navigation problem for a mobile robot is illustrated to show the feasibility of our approach.","PeriodicalId":129683,"journal":{"name":"Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhancing recognizability of robotics environments\",\"authors\":\"G. Borghi, E. Pagello, M. Vianello\",\"doi\":\"10.1109/EURBOT.1997.633583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of state recognizability in robotics environments modeled by partially observable Markov decision processes. To make the model of robot-environment interaction more reliable, in the usual state transition table, we add to the state transition probabilities an additional continuous metric via the mean and the variance of some significant sensor measurements suitable to be kept under a continuous form, such as odometric measurements. These information allow one to greatly enhance the state recognizability. Our approach is general, and can be applied to any robotics application that requires compensation of the uncertainties due to sensor errors and to the randomness of robot action effects on its environment. We have devised some possible applications to modeling the interaction between a manipulator and its world, but in this paper, only a specific application to the navigation problem for a mobile robot is illustrated to show the feasibility of our approach.\",\"PeriodicalId\":129683,\"journal\":{\"name\":\"Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURBOT.1997.633583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURBOT.1997.633583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了由部分可观察马尔可夫决策过程建模的机器人环境中的状态可识别问题。为了使机器人-环境相互作用模型更加可靠,在通常的状态转移表中,我们通过一些适合以连续形式保存的重要传感器测量值(如里程测量值)的均值和方差,在状态转移概率中添加额外的连续度量。这些信息可以大大提高状态的可识别性。我们的方法是通用的,可以应用于任何需要补偿由于传感器误差和机器人动作对其环境影响的随机性而产生的不确定性的机器人应用。我们已经设计了一些可能的应用程序来建模机械臂和它的世界之间的相互作用,但在本文中,只有一个特定的应用程序来说明一个移动机器人的导航问题,以显示我们的方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing recognizability of robotics environments
We consider the problem of state recognizability in robotics environments modeled by partially observable Markov decision processes. To make the model of robot-environment interaction more reliable, in the usual state transition table, we add to the state transition probabilities an additional continuous metric via the mean and the variance of some significant sensor measurements suitable to be kept under a continuous form, such as odometric measurements. These information allow one to greatly enhance the state recognizability. Our approach is general, and can be applied to any robotics application that requires compensation of the uncertainties due to sensor errors and to the randomness of robot action effects on its environment. We have devised some possible applications to modeling the interaction between a manipulator and its world, but in this paper, only a specific application to the navigation problem for a mobile robot is illustrated to show the feasibility of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards sophisticated mobile robot sonar sensing using pseudo-random sequences Landmark matching in a varying environment Non-supervised chromatic illuminant: corrector for autonomous robots Mobile robot navigation using recursive motion control Navigation and guidance of an intelligent mobile robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1