{"title":"GGMRF先验模型的尺度超参数估计及其在SPECT图像中的应用","authors":"A. López, R. Molina, A. Katsaggelos","doi":"10.1109/ICDSP.2002.1028142","DOIUrl":null,"url":null,"abstract":"In this work we develop a Bayesian reconstruction method for SPECT (single photon emission computed tomography) images, using as prior GGMRF (generalized Gaussian Markov random fields) distributions and estimating the scale hyperparameter following the evidence analysis. Preconditioning methods are used to estimate this hyperparameter and the approximations used are compared on synthetic images.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scale hyperparameter estimation for GGMRF prior models with application to SPECT images\",\"authors\":\"A. López, R. Molina, A. Katsaggelos\",\"doi\":\"10.1109/ICDSP.2002.1028142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we develop a Bayesian reconstruction method for SPECT (single photon emission computed tomography) images, using as prior GGMRF (generalized Gaussian Markov random fields) distributions and estimating the scale hyperparameter following the evidence analysis. Preconditioning methods are used to estimate this hyperparameter and the approximations used are compared on synthetic images.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scale hyperparameter estimation for GGMRF prior models with application to SPECT images
In this work we develop a Bayesian reconstruction method for SPECT (single photon emission computed tomography) images, using as prior GGMRF (generalized Gaussian Markov random fields) distributions and estimating the scale hyperparameter following the evidence analysis. Preconditioning methods are used to estimate this hyperparameter and the approximations used are compared on synthetic images.