一个多样本多源的生物识别认证模型

N. Poh, Samy Bengio, J. Korczak
{"title":"一个多样本多源的生物识别认证模型","authors":"N. Poh, Samy Bengio, J. Korczak","doi":"10.1109/NNSP.2002.1030049","DOIUrl":null,"url":null,"abstract":"In this study, two techniques that can improve the authentication process are examined: (i) multiple samples and (ii) multiple biometric sources. We propose the fusion of multiple samples obtained from multiple biometric sources at the score level. By using the average operator, both the theoretical and empirical results show that integrating as many samples and as many biometric sources as possible can improve the overall reliability of the system. This strategy is called the multi-sample multi-source approach. This strategy was tested on a real-life database using neural networks trained in one-versus-all configuration.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"A multi-sample multi-source model for biometric authentication\",\"authors\":\"N. Poh, Samy Bengio, J. Korczak\",\"doi\":\"10.1109/NNSP.2002.1030049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, two techniques that can improve the authentication process are examined: (i) multiple samples and (ii) multiple biometric sources. We propose the fusion of multiple samples obtained from multiple biometric sources at the score level. By using the average operator, both the theoretical and empirical results show that integrating as many samples and as many biometric sources as possible can improve the overall reliability of the system. This strategy is called the multi-sample multi-source approach. This strategy was tested on a real-life database using neural networks trained in one-versus-all configuration.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

在本研究中,研究了两种可以改善认证过程的技术:(i)多个样本和(ii)多个生物识别源。我们建议在分数水平上融合来自多个生物特征源的多个样本。通过使用平均算子,理论和实证结果都表明,尽可能多的样本和尽可能多的生物特征源集成可以提高系统的整体可靠性。这种策略被称为多样本多源方法。该策略在一个真实的数据库上进行了测试,使用的是经过一对一配置训练的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-sample multi-source model for biometric authentication
In this study, two techniques that can improve the authentication process are examined: (i) multiple samples and (ii) multiple biometric sources. We propose the fusion of multiple samples obtained from multiple biometric sources at the score level. By using the average operator, both the theoretical and empirical results show that integrating as many samples and as many biometric sources as possible can improve the overall reliability of the system. This strategy is called the multi-sample multi-source approach. This strategy was tested on a real-life database using neural networks trained in one-versus-all configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of multiple experts in multimodal biometric personal identity verification systems A new SOLPN-based rate control algorithm for MPEG video coding Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity Removal of residual crosstalk components in blind source separation using LMS filters Functional connectivity modelling in fMRI based on causal networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1